William Thomson, 1. Baron Kelvin




William Thomson, 1. Baron Kelvin (Fotografie 1906)




Thomsons Spiegel-Galvanometer, 1858. Science Museum London.


William Thomson, 1. Baron Kelvin oder kurz Lord Kelvin, OM, GCVO, PC, FRS, FRSE, (* 26. Juni 1824 in Belfast, Provinz Ulster, Vereinigtes Königreich Großbritannien und Irland; † 17. Dezember 1907 in Netherhall bei Largs, Schottland) war ein Physiker auf den Gebieten der Elektrizitätslehre und der Thermodynamik. Die Einheit Kelvin wurde nach William Thomson benannt, der im Alter von 24 Jahren die thermodynamische Temperaturskala einführte. Thomson ist sowohl für theoretische Arbeiten als auch für die Entwicklung von Messinstrumenten bekannt.




Inhaltsverzeichnis





  • 1 Leben


  • 2 Werk


  • 3 Ansichten zur Evolutionstheorie und Alter der Erde


  • 4 Ehrungen


  • 5 Literatur


  • 6 Schriften


  • 7 Weblinks


  • 8 Einzelnachweise




Leben |


William Thomson war der Sohn von James Thomson (1786–1849), der Professor für Mathematik in Belfast war und ab 1832 Professor für Mathematik an der Universität Glasgow. Ein Bruder, James Thomson, war Ingenieur. Seine Mutter Margaret Gardiner starb als er sechs Jahre alt war (1830) und er wurde von seinem Vater erzogen, der ursprünglich presbyterianischer Geistlicher werden wollte und seine Kinder streng in diesem Glauben erzog. Von seinem Vater erhielt er auch seinen ersten Mathematikunterricht. Ab 1834 studierte er an der Universität Glasgow, wobei eigentliche Universitätsstudien ab 1838 erfolgten, darunter Astronomie, Chemie und Physik. 1839 erhielt er eine Goldmedaille der Universität für einen Essay über die Figur der Erde. Die Ausbildung in theoretischer Physik erfolgte damals in Glasgow unter dem Professor für Naturphilosophie William Meikleham und dem Astronomieprofessor John Pringle Nichol häufig unter dem Einfluss französischer Physiker und Mathematiker wie Pierre Simon de Laplace (besonders dessen Himmelsmechanik), Joseph-Louis Lagrange, Augustin Jean Fresnel, Adrien-Marie Legendre und Joseph Fourier, dessen Analytische Theorie der Wärme Thomson studierte. Das war ein Gegensatz zu Cambridge, wo es damals noch nicht einmal einen Lehrstuhl für Naturphilosophie gab. Thomson besuchte 1839 Paris und studierte ab 1841 in Cambridge. Seine erste Veröffentlichung war 1841 eine Verteidigung der Fourieranalyse gegen mathematische Kritik aus Edinburgh und 1842 veröffentlichte er einen Aufsatz, in dem er die mathematische Behandlung des Wärmeflusses durch Fourier auf die Elektrizität übertrug. In Cambridge nahm er 1845 am letzten Teil der Tripos-Prüfungen teil, auf die er sich unter dem damals für diese Vorbereitungskurse bekannten Privat-Tutor William Hopkins vorbereitete, was einen großen Teil seiner Zeit in Anspruch nahm, und wurde Second Wrangler. Damals waren weder Elektrizität, Magnetismus noch Wärme Gegenstand der Prüfungen, was sich erst durch die Reformen von James Clerk Maxwell wesentlich änderte. Er erhielt einen Bachelor-Abschluss (B.A.), gewann den Smith-Preis und wurde Fellow des Peterhouse College in Cambridge. Um diese Zeit studierte er auch das Werk von George Green, das großen Einfluss auf ihn hatte, und ging 1845 zu weiterem Studium nach Paris, wo er unter anderem mit Augustin-Louis Cauchy, Charles-François Sturm, Jean-Baptiste Biot und Joseph Liouville Kontakt hatte und im Labor von Henri Victor Regnault war. Auf Anregung von Liouville begann er sich intensiv mit der Theorie der Elektrizität zu befassen und den damals damit verbundenen physikalischen Konzepten (damals herrschte die Vorstellung elektrischer Flüssigkeiten vor, und neben Fernwirkungstheorien der zugehörigen Kräfte auch Vorstellungen über ein vermittelndes Medium, den Äther).


Thomson kehrte 1846 nach Glasgow zurück, als der Lehrstuhl für Naturphilosophie (theoretische Physik) frei wurde, für den er mit Unterstützung seines einflussreichen Vaters erfolgreich kandidierte. Er war von 1846 bis 1899 Professor für theoretische Physik in Glasgow und forschte hierbei hauptsächlich auf den Gebieten der Elektrizitätslehre und der Thermodynamik.



Werk |


Frühe Arbeiten von Thomson betrafen die Thermodynamik, so 1848 eine Arbeit zur Thermodynamik auf Basis der Carnotschen Wärmetheorie, in der er unter anderem die später nach ihm benannte absolute Temperaturskala einführte. Deren Einheit Kelvin ist in ihrer heutigen Form die seit 1968 gesetzlich festgelegte SI-Einheit der Temperatur. Seine Überlegungen zur Thermodynamik waren damals noch fehlerbehaftet und erst der Ideenaustausch mit James Prescott Joule ab 1847 überzeugte ihn von einer dynamischen Theorie der Wärme. 1847 begann eine intensive Zusammenarbeit mit dem theoretischen Physiker George Gabriel Stokes, die sich dann in einem umfangreichen Briefwechsel über fünfzig Jahre fortsetzte und anfangs die Hydrodynamik betraf.


Thomson war auch vor James Clerk Maxwell ein Vorläufer der dynamischen Theorie der Elektrizität und des Magnetismus (einschließlich von Licht als elektrodynamischer Erscheinung). Als Anregung diente Thomson dabei die dynamische Theorie der Wärme. Außerdem war er der erste, der das Kraftlinien-Konzept von Michael Faraday mathematisch formulierte. Die Theorien von Thomson aus den 1850er Jahren waren von wesentlichem Einfluss auf Maxwells eigene Theorie. Thomson selbst zögerte aber lange Maxwells Theorie anzuerkennen und verfolgte eine eigene Theorie, die Elektrodynamik, Licht, chemische Prozesse und Gravitation in einheitlicher Weise über die Wirkung im Äther behandeln sollte. Er lehnte auch das Atom-Konzept ab (und unterstützte P. G. Tait in dessen Versuch, Atome als verknotete Ringe im Äther darzustellen) und war später ein Gegner der Ideen von Ernest Rutherford zur Radioaktivität.


Sehr einflussreich war sein Lehrbuch der theoretischen Physik Treatise on Natural Philosophy mit Peter Guthrie Tait von 1867, das erstmals Newtonsche, Lagrange- und Hamiltonmechanik vereinte mit einer auf dem Energiekonzept basierenden Darstellung.[1] Die Kraft war darin nur noch ein abgeleitetes Konzept aus Extremalprinzipien der Energie. Die Zusammenarbeit von Thomson mit Tait, der Professor in Edinburgh war, begann 1861. Es waren mehrere Bände geplant, erschienen sind aber nur die Teile über Kinematik und Dynamik. Das lag auch daran dass 1873 der Treatise on Electricity and Magnetism von Maxwell erschien, mit dem sich Thomson abstimmte.


Gemeinsam mit James Prescott Joule entdeckte er 1852 den Joule-Thomson-Effekt, ferner 1857 den magnetischen AMR-Effekt. Im Jahr 1867 entwickelte Thomson die Anwendung der Fourieranalyse zur Berechnung der Gezeiten und konstruierte 1872 die erste Gezeitenrechenmaschine. Er war auch wesentlich an der Vorbereitung und Verlegung von Tiefseetelegraphenkabeln im Atlantik beteiligt. Beim ersten Kabel, das 1858 verlegt wurde, war er einer der Direktoren der Gesellschaft und technischer Berater, geriet aber mit dem Leiter E. O. W. Whitehouse in Konflikt, da dieser sich nicht an die Empfehlungen von Thomson hielt.[2] Außerdem gab es Patentstreitigkeiten. Erfolgreicher war das zweite Kabelprojekt in den 1860er Jahren. Für die Bestimmung der Wassertiefe bei den Kabelprojekten erfand er eine 1876 in Großbritannien patentierte Thomsonsche Lotmaschine. Die Telegraphengleichung wurde aber nicht von Thomson, sondern von Oliver Heaviside 1885 entwickelt.[3] Die Erlöse aus dem Kabelprojekt machten Thomson wohlhabend und waren ein wesentlicher Grund für seine Erhebung in den Adelsstand und die Peerswürde. Unter anderem kaufte er sich ein großes Anwesen an der schottischen Küste in Largs und eine 126 Tonnen-Yacht, die er Lalla Rookh nannte.


Thomson konstruierte die noch heute übliche Form des Trockenkompasses und beschäftigte sich auch intensiv mit Elektrizität. Dabei entwickelte er die nach ihm benannte Thomson-Brücke, die Thomsonsche Schwingungsgleichung und den Kelvin-Generator und beschrieb den Thomson-Effekt. Darüber hinaus konstruierte er ein Spiegel-Galvanometer (verwendet in den ersten Telegraphenkabeln über den Atlantik), eine Spannungswaage und nicht zuletzt das Quadranten-Elektrometer. Seine Vielseitigkeit auf fast allen Gebieten der Physik führte dazu, dass ihm über 70 Patente erteilt wurden. Sowohl wissenschaftliche Anerkennung als auch finanzielle Unabhängigkeit wurden ihm dadurch zuteil.


Er veröffentlichte über 600 wissenschaftliche Arbeiten.


Als Professor führte er Laborkurse ein auf gleicher Stufe mit theoretischen Vorlesungen und vergab Preise an begabte Studenten.




Familiengrab Thomson, Glasgow Necropolis



Ansichten zur Evolutionstheorie und Alter der Erde |


Thomson griff auch in die Debatte um die Evolutionstheorie ein. Er schätzte 1862 das Alter der Erde auf 25–400 Millionen Jahre, wobei 98 Millionen Jahre der wahrscheinlichste Wert sei. 1869 erklärte er, dass dieser Zeitrahmen für eine Evolution nach den von Charles Darwin angenommenen Mechanismen zu kurz sei und schlug vor, das Leben habe mit einem Meteoriten die Erde erreicht. Später grenzte er den Zeitpunkt der Entstehung der Erde bis auf 24,1 Millionen Jahre ein und sah dies als seine größte Leistung. Zu diesem Ergebnis kam er aufgrund der noch vorhandenen Erdwärme, die jedoch nach späterem Wissen zum Teil aus radioaktiven Prozessen im Erdinneren gespeist wird. Als später Messungen des radioaktiven Zerfalls zu höheren Werten führten, revidierte er seine Meinung nicht.


Er grenzte seine thermodynamischen Berechnungen auch deutlich gegen seiner Meinung nach „vage Beobachtungen“ von Geologen wie Charles Darwin ab, der abgeschätzt hatte, dass es etwas mehr als 300 Millionen Jahre gedauert haben müsse, bis ein 500 Fuß hohes Kalkstein-Kliff im Süden Englands durch das Meer abgetragen wurde.[4]


Lord Kelvin bezweifelte Darwins Ergebnis auch, weil er 1862 als dauerhafteste Energiequelle für die Sonnenstrahlung die von Helmholtz vorgeschlagene Freisetzung gravitativer Bindungsenergie vermutete. Unter der Annahme, dass die Sonnenmasse stark zum Zentrum hin konzentriert sei, wäre ihr Alter unter 100 Millionen Jahren.[5] Später engte er die Abkühlungdauer des Erdmantels auf 20 bis 40 Mio. Jahre ein. Er erlebte zwar noch, dass Ernest Rutherford 1904 den radioaktiven Zerfall als Quelle der Erdwärme vorschlug, teilte diese Meinung aber nicht. Die Energieabgabe der Sonne über geologische Zeiträume hinweg konnte erst ab 1920 mit der Kernfusion erklärt werden.



Ehrungen |




Wappen des Baron Kelvin


1851 wurde er Fellow der Royal Society, deren Royal Medal er 1856 und deren Copley Medal 1883 er erhielt und deren Präsident er 1890 bis 1895 war. 1872 wurde er in die American Academy of Arts and Sciences gewählt. 1876 erhielt er als erst dritter Wissenschaftler die Matteucci-Medaille. 1883 wurde Thomson in die National Academy of Sciences, 1884 in den Orden Pour le mérite für Wissenschaft und Künste aufgenommen. 1887 wurde er Mitglied der Deutschen Akademie der Naturforscher Leopoldina.[6] 1871 war er Präsident der British Association for the Advancement of Science. Er war Fellow der Royal Society of Edinburgh und mehrfach deren Präsident (1873 bis 1878, 1886 bis 1890, 1895 bis zu seinem Tod 1907).


1866 wurde er zum Ritter geschlagen und 1892 als Baron Kelvin, of Largs in the County of Ayr[7], in den erblichen Adelsstand erhoben. Der Namensgeber für den Titel ist der Fluss Kelvin durch Glasgow, an dem die Universität liegt, und Largs der Ort seines Landsitzes an der Küste. Mit dem Titel war ein Sitz im House of Lords verbunden. Da er keine Nachkommen hinterließ, erlosch der Adelstitel bei seinem Tod.


Zu Ehren Lord Kelvins wurden zwei Mondformationen benannt, das Kap Kelvin und die Rupes Kelvin. Weiterhin wurden verschiedene Objekte nach ihm benannt, an deren Entwicklung er maßgeblich beteiligt war, beispielsweise die Kelvingleichung, die Kelvin-Kontraktion, die Kelvin-Sonde und die Kelvinwelle. Darüber hinaus ist er Namensgeber für die Kelvin Crests, ein Gebirge in der Antarktis.



Literatur |



  • Jed Z. Buchwald: Thomson, Sir William (Baron Kelvin of Largs), in Dictionary of Scientific Biography


  • Silvanus P. Thompson: The life of William Thomson, Baron Kelvin of Largs. In two volumes. Publisher: Macmillan & Co., London 1910 (mit Bibliographie der Schriften von Thomson und umfangreichen Briefauszügen)

  • Silvanus P. Thompson:The life of William Thomson, Baron Kelvin of Largs. Volume I

  • Alexander Russell: Lord Kelvin; his life and work Publisher: T.C. & E.C. Jack; London 1912

  • Andrew Grey: Lord Kelvin: an account of his scientific life and work. Publisher: J. M. Dent & Co., London 1908

  • George F. Fitzgerald: Lord Kelvin, professor of natural philosophy in the University of Glasgow, 1846–1899: with an essay on his scientific work. Publisher: James MacLehose and Sons, Glasgow 1899


  • In memoriam. The Right Honorable William Thomson, Lord Kelvin, born June 26, 1824; died December 17, 1907; interred in Westminster Abbey December 23, 1907 Publisher: The American Institute of Electrical Engineers, New York 1908

  • C. Smith, N. M. Wise: Energy and Empire. A biographical study of Lord Kelvin, Cambridge University Press 1989


Schriften |


  • Reprint of Papers on Electrostatics and Magnetism, London 1872, Ausgabe 1884, Archive

  • Mathematical and Physical Papers, 6 Bände, Cambridge 1911, Band 1, Archive, Band 2, Band 3, Band 4, Band 5, Band 6

  • mit P. G. Tait: Treatise on Natural Philosophy, 2 Bände, Oxford 1867, Band 1, 1912, Archive, Band 2, 1895, Archive
    • deutsche Übersetzung: Handbuch der theoretischen Physik, Übersetzt von Gustav Wertheim, Hermann von Helmholtz, Vieweg 1871, Band 1, Archive


Weblinks |



 Commons: William Thomson, 1. Baron Kelvin – Sammlung von Bildern, Videos und Audiodateien


  • Literatur von und über William Thomson, 1. Baron Kelvin im Katalog der Deutschen Nationalbibliothek

  • John J. O’Connor, Edmund F. Robertson: William Thomson (Lord Kelvin). In: MacTutor History of Mathematics archive.


  • Bilder aus dem Leben von Lord Kelvin (Memento vom 4. März 2012 im Internet Archive)

  • Kurzbiographie der TU München, Fakultät für Physik


  • Prof Thomson’s (Lord Kelvin) Mirror instrument in: Charles Bright: The story of the Atlantic cable. Publisher: Georges Newnes Ltd., London 1903


  • William Thomson, Baron Kelvin – in der National Portrait Gallery, London


Einzelnachweise |



  1. M. Norton Wise: William Thomson and Peter Guthrie Tait, Treatise on Natural Philosophy (1867), First Edition, in Grattan-Guinness (Hrsg.), Landmark Writings in Western Mathematics 1650-1940, Elsevier 2005, Kapitel 40


  2. D. de Cogan, Dr E.O.W. Whitehouse and the 1858 trans-Atlantic Cable, History of Technology, Band 10, 1985, S. 1–15


  3. Ernst Weber and Frederik Nebeker, The Evolution of Electrical Engineering, IEEE Press, Piscataway, New Jersey USA, 1994 ISBN 0-7803-1066-7


  4. Heuel-Fabianek, B. (2017): Natürliche Radioisotope: die „Atomuhr“ für die Bestimmung des absoluten Alters von Gesteinen und archäologischen Funden. Strahlenschutz Praxis, 1/2017, S. 31–42.


  5. William Thomson: On the Age of the Sun’s Heat. In: en:Macmillan's Magazine. 5, 1862, S. 388–393.


  6. Mitgliedseintrag von Sir William Thomson bei der Deutschen Akademie der Naturforscher Leopoldina, abgerufen am 18. Juni 2016.


  7. The London Gazette: Nr. 26260, S. 991, 23. Februar 1892.

















Popular posts from this blog

How to how show current date and time by default on contact form 7 in WordPress without taking input from user in datetimepicker

Syphilis

Darth Vader #20