How to avoid saving optimizer states when exporting a model in tensorflow?










0















I have written a tensorflow model, and when I export the model using simple_save, like this:






signature_def_map = 
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature_def_utils.predict_signature_def(inputs, outputs)

b = builder.SavedModelBuilder(export_dir)
b.add_meta_graph_and_variables(
session,
tags=[tag_constants.SERVING],
signature_def_map=signature_def_map,
assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
legacy_init_op=legacy_init_op,
clear_devices=True)
b.save(as_text=True)





I found that all the variables in Adagrad are also saved, according to the saved_model.pbtxt:






node {
name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
op: "VariableV2"
attr
key: "_class"
value
list
s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



attr
key: "_output_shapes"
value
list
shape
dim
size: 31

dim
size: 16









This causes the saved model to be twice as big as necessary. Is there a way to remove them? (The saved model is used for prediction only, so it does not need the optimizer states.)



Thanks!










share|improve this question


























    0















    I have written a tensorflow model, and when I export the model using simple_save, like this:






    signature_def_map = 
    signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
    signature_def_utils.predict_signature_def(inputs, outputs)

    b = builder.SavedModelBuilder(export_dir)
    b.add_meta_graph_and_variables(
    session,
    tags=[tag_constants.SERVING],
    signature_def_map=signature_def_map,
    assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
    legacy_init_op=legacy_init_op,
    clear_devices=True)
    b.save(as_text=True)





    I found that all the variables in Adagrad are also saved, according to the saved_model.pbtxt:






    node {
    name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
    op: "VariableV2"
    attr
    key: "_class"
    value
    list
    s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



    attr
    key: "_output_shapes"
    value
    list
    shape
    dim
    size: 31

    dim
    size: 16









    This causes the saved model to be twice as big as necessary. Is there a way to remove them? (The saved model is used for prediction only, so it does not need the optimizer states.)



    Thanks!










    share|improve this question
























      0












      0








      0








      I have written a tensorflow model, and when I export the model using simple_save, like this:






      signature_def_map = 
      signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
      signature_def_utils.predict_signature_def(inputs, outputs)

      b = builder.SavedModelBuilder(export_dir)
      b.add_meta_graph_and_variables(
      session,
      tags=[tag_constants.SERVING],
      signature_def_map=signature_def_map,
      assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
      legacy_init_op=legacy_init_op,
      clear_devices=True)
      b.save(as_text=True)





      I found that all the variables in Adagrad are also saved, according to the saved_model.pbtxt:






      node {
      name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
      op: "VariableV2"
      attr
      key: "_class"
      value
      list
      s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



      attr
      key: "_output_shapes"
      value
      list
      shape
      dim
      size: 31

      dim
      size: 16









      This causes the saved model to be twice as big as necessary. Is there a way to remove them? (The saved model is used for prediction only, so it does not need the optimizer states.)



      Thanks!










      share|improve this question














      I have written a tensorflow model, and when I export the model using simple_save, like this:






      signature_def_map = 
      signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
      signature_def_utils.predict_signature_def(inputs, outputs)

      b = builder.SavedModelBuilder(export_dir)
      b.add_meta_graph_and_variables(
      session,
      tags=[tag_constants.SERVING],
      signature_def_map=signature_def_map,
      assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
      legacy_init_op=legacy_init_op,
      clear_devices=True)
      b.save(as_text=True)





      I found that all the variables in Adagrad are also saved, according to the saved_model.pbtxt:






      node {
      name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
      op: "VariableV2"
      attr
      key: "_class"
      value
      list
      s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



      attr
      key: "_output_shapes"
      value
      list
      shape
      dim
      size: 31

      dim
      size: 16









      This causes the saved model to be twice as big as necessary. Is there a way to remove them? (The saved model is used for prediction only, so it does not need the optimizer states.)



      Thanks!






      signature_def_map = 
      signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
      signature_def_utils.predict_signature_def(inputs, outputs)

      b = builder.SavedModelBuilder(export_dir)
      b.add_meta_graph_and_variables(
      session,
      tags=[tag_constants.SERVING],
      signature_def_map=signature_def_map,
      assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
      legacy_init_op=legacy_init_op,
      clear_devices=True)
      b.save(as_text=True)





      signature_def_map = 
      signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
      signature_def_utils.predict_signature_def(inputs, outputs)

      b = builder.SavedModelBuilder(export_dir)
      b.add_meta_graph_and_variables(
      session,
      tags=[tag_constants.SERVING],
      signature_def_map=signature_def_map,
      assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS),
      legacy_init_op=legacy_init_op,
      clear_devices=True)
      b.save(as_text=True)





      node {
      name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
      op: "VariableV2"
      attr
      key: "_class"
      value
      list
      s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



      attr
      key: "_output_shapes"
      value
      list
      shape
      dim
      size: 31

      dim
      size: 16









      node {
      name: "input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0/Adagrad"
      op: "VariableV2"
      attr
      key: "_class"
      value
      list
      s: "loc:@input/input_layer_1/context.match_type_info_x_MatchNum_embedding/embedding_weights/part_0"



      attr
      key: "_output_shapes"
      value
      list
      shape
      dim
      size: 31

      dim
      size: 16










      tensorflow tensorflow-serving






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 15 '18 at 6:37









      Chi ZhangChi Zhang

      3861521




      3861521






















          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313735%2fhow-to-avoid-saving-optimizer-states-when-exporting-a-model-in-tensorflow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313735%2fhow-to-avoid-saving-optimizer-states-when-exporting-a-model-in-tensorflow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Use pre created SQLite database for Android project in kotlin

          Darth Vader #20

          Ondo