almost sure convergence and asymptotic convergence in python










0














I want to plot almost sure convergence and asymptotic convergence. But, I do not have the good result (bad convergence). I don't know where is the problem. It maybe Parzen-Rosenblatt estimator. Is it correctly specified?



from matplotlib.pyplot import *
from math import *
from array import *
import numpy as np
from numpy.random import *
from scipy.misc import *
from scipy.stats import *
from scipy import *
from random import *


#N=1000
n=30
lamb=2
X=lamb*tan(pi*(np.reshape(rand(n,1),n)-0.5)) #loi de Cauchy
x=1
alpha=0.45

def k_gaussien(x):
sigma=1
if(sigma>0):
return((1/(sigma*sqrt(2*pi)))*exp(-(x**2/(2*sigma**2))))

def h(n,alpha):
for i in range(1,n):
return (i**(1-alpha))

def f_PR(x,X,alpha): # Parzen-Rosenblatt estimator
global F;
F = ones((n,1))
h_n = h(n,alpha)
for k in range(2,n):
for i in range(1,k):
F[k] = F[k] + k_gaussien((x-X[i])*i**alpha)
F[k] = F[k] * h_n
return F

# Almost sure convergence f_n(x)--> f(x) ps
figure(figsize=(20,10))
fPR=f_PR(x,X,alpha)
t=linspace(-10,10,n);
plot(cumsum(fPR)/t)
plot(t,0*linspace(1,1,n),lw=3)
plot(t,0*linspace(1,1,n),"r--",lw=3)#with Cauchy density
grid(True)
title("convergence presque sure",fontsize=20,color="blue")

# Convergence in mean N(0,e2f(x))
figure(figsize=(20,10))
x=linspace(1,n,n)
Z= sqrt(h(n,alpha))*(fPR-(1/pi)*(lamb/(lamb**2+x**2))) # sqrt(nh_n)(fn(x)-f(x))
hist(Z,bins=linspace(-10,10,50),normed=True)
title("Theoreme limite centrale",fontsize=20,color="blue")
y=linspace(-10,10,100);
v=(1/pi)*(lamb/(lamb**2+y**2)) # standard deviation (sigma)
plot(y,(1/(sqrt(2*pi)*v))*exp((-y**2)/(2*v**2)),'r',lw=3)# I substitute standard deviation(sigma^2) by cauchy density
title("convergence asymptotique", fontsize=20,color="blue")









share|improve this question




























    0














    I want to plot almost sure convergence and asymptotic convergence. But, I do not have the good result (bad convergence). I don't know where is the problem. It maybe Parzen-Rosenblatt estimator. Is it correctly specified?



    from matplotlib.pyplot import *
    from math import *
    from array import *
    import numpy as np
    from numpy.random import *
    from scipy.misc import *
    from scipy.stats import *
    from scipy import *
    from random import *


    #N=1000
    n=30
    lamb=2
    X=lamb*tan(pi*(np.reshape(rand(n,1),n)-0.5)) #loi de Cauchy
    x=1
    alpha=0.45

    def k_gaussien(x):
    sigma=1
    if(sigma>0):
    return((1/(sigma*sqrt(2*pi)))*exp(-(x**2/(2*sigma**2))))

    def h(n,alpha):
    for i in range(1,n):
    return (i**(1-alpha))

    def f_PR(x,X,alpha): # Parzen-Rosenblatt estimator
    global F;
    F = ones((n,1))
    h_n = h(n,alpha)
    for k in range(2,n):
    for i in range(1,k):
    F[k] = F[k] + k_gaussien((x-X[i])*i**alpha)
    F[k] = F[k] * h_n
    return F

    # Almost sure convergence f_n(x)--> f(x) ps
    figure(figsize=(20,10))
    fPR=f_PR(x,X,alpha)
    t=linspace(-10,10,n);
    plot(cumsum(fPR)/t)
    plot(t,0*linspace(1,1,n),lw=3)
    plot(t,0*linspace(1,1,n),"r--",lw=3)#with Cauchy density
    grid(True)
    title("convergence presque sure",fontsize=20,color="blue")

    # Convergence in mean N(0,e2f(x))
    figure(figsize=(20,10))
    x=linspace(1,n,n)
    Z= sqrt(h(n,alpha))*(fPR-(1/pi)*(lamb/(lamb**2+x**2))) # sqrt(nh_n)(fn(x)-f(x))
    hist(Z,bins=linspace(-10,10,50),normed=True)
    title("Theoreme limite centrale",fontsize=20,color="blue")
    y=linspace(-10,10,100);
    v=(1/pi)*(lamb/(lamb**2+y**2)) # standard deviation (sigma)
    plot(y,(1/(sqrt(2*pi)*v))*exp((-y**2)/(2*v**2)),'r',lw=3)# I substitute standard deviation(sigma^2) by cauchy density
    title("convergence asymptotique", fontsize=20,color="blue")









    share|improve this question


























      0












      0








      0







      I want to plot almost sure convergence and asymptotic convergence. But, I do not have the good result (bad convergence). I don't know where is the problem. It maybe Parzen-Rosenblatt estimator. Is it correctly specified?



      from matplotlib.pyplot import *
      from math import *
      from array import *
      import numpy as np
      from numpy.random import *
      from scipy.misc import *
      from scipy.stats import *
      from scipy import *
      from random import *


      #N=1000
      n=30
      lamb=2
      X=lamb*tan(pi*(np.reshape(rand(n,1),n)-0.5)) #loi de Cauchy
      x=1
      alpha=0.45

      def k_gaussien(x):
      sigma=1
      if(sigma>0):
      return((1/(sigma*sqrt(2*pi)))*exp(-(x**2/(2*sigma**2))))

      def h(n,alpha):
      for i in range(1,n):
      return (i**(1-alpha))

      def f_PR(x,X,alpha): # Parzen-Rosenblatt estimator
      global F;
      F = ones((n,1))
      h_n = h(n,alpha)
      for k in range(2,n):
      for i in range(1,k):
      F[k] = F[k] + k_gaussien((x-X[i])*i**alpha)
      F[k] = F[k] * h_n
      return F

      # Almost sure convergence f_n(x)--> f(x) ps
      figure(figsize=(20,10))
      fPR=f_PR(x,X,alpha)
      t=linspace(-10,10,n);
      plot(cumsum(fPR)/t)
      plot(t,0*linspace(1,1,n),lw=3)
      plot(t,0*linspace(1,1,n),"r--",lw=3)#with Cauchy density
      grid(True)
      title("convergence presque sure",fontsize=20,color="blue")

      # Convergence in mean N(0,e2f(x))
      figure(figsize=(20,10))
      x=linspace(1,n,n)
      Z= sqrt(h(n,alpha))*(fPR-(1/pi)*(lamb/(lamb**2+x**2))) # sqrt(nh_n)(fn(x)-f(x))
      hist(Z,bins=linspace(-10,10,50),normed=True)
      title("Theoreme limite centrale",fontsize=20,color="blue")
      y=linspace(-10,10,100);
      v=(1/pi)*(lamb/(lamb**2+y**2)) # standard deviation (sigma)
      plot(y,(1/(sqrt(2*pi)*v))*exp((-y**2)/(2*v**2)),'r',lw=3)# I substitute standard deviation(sigma^2) by cauchy density
      title("convergence asymptotique", fontsize=20,color="blue")









      share|improve this question















      I want to plot almost sure convergence and asymptotic convergence. But, I do not have the good result (bad convergence). I don't know where is the problem. It maybe Parzen-Rosenblatt estimator. Is it correctly specified?



      from matplotlib.pyplot import *
      from math import *
      from array import *
      import numpy as np
      from numpy.random import *
      from scipy.misc import *
      from scipy.stats import *
      from scipy import *
      from random import *


      #N=1000
      n=30
      lamb=2
      X=lamb*tan(pi*(np.reshape(rand(n,1),n)-0.5)) #loi de Cauchy
      x=1
      alpha=0.45

      def k_gaussien(x):
      sigma=1
      if(sigma>0):
      return((1/(sigma*sqrt(2*pi)))*exp(-(x**2/(2*sigma**2))))

      def h(n,alpha):
      for i in range(1,n):
      return (i**(1-alpha))

      def f_PR(x,X,alpha): # Parzen-Rosenblatt estimator
      global F;
      F = ones((n,1))
      h_n = h(n,alpha)
      for k in range(2,n):
      for i in range(1,k):
      F[k] = F[k] + k_gaussien((x-X[i])*i**alpha)
      F[k] = F[k] * h_n
      return F

      # Almost sure convergence f_n(x)--> f(x) ps
      figure(figsize=(20,10))
      fPR=f_PR(x,X,alpha)
      t=linspace(-10,10,n);
      plot(cumsum(fPR)/t)
      plot(t,0*linspace(1,1,n),lw=3)
      plot(t,0*linspace(1,1,n),"r--",lw=3)#with Cauchy density
      grid(True)
      title("convergence presque sure",fontsize=20,color="blue")

      # Convergence in mean N(0,e2f(x))
      figure(figsize=(20,10))
      x=linspace(1,n,n)
      Z= sqrt(h(n,alpha))*(fPR-(1/pi)*(lamb/(lamb**2+x**2))) # sqrt(nh_n)(fn(x)-f(x))
      hist(Z,bins=linspace(-10,10,50),normed=True)
      title("Theoreme limite centrale",fontsize=20,color="blue")
      y=linspace(-10,10,100);
      v=(1/pi)*(lamb/(lamb**2+y**2)) # standard deviation (sigma)
      plot(y,(1/(sqrt(2*pi)*v))*exp((-y**2)/(2*v**2)),'r',lw=3)# I substitute standard deviation(sigma^2) by cauchy density
      title("convergence asymptotique", fontsize=20,color="blue")






      python simulation






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 11 at 17:48









      Thierry Lathuille

      7,59182730




      7,59182730










      asked Nov 11 at 17:46









      Sa Majesté

      83




      83



























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53251479%2falmost-sure-convergence-and-asymptotic-convergence-in-python%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53251479%2falmost-sure-convergence-and-asymptotic-convergence-in-python%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Use pre created SQLite database for Android project in kotlin

          Darth Vader #20

          Ondo