How to add custom summaries to tensorboard when training with tf.keras.Model.fit









up vote
0
down vote

favorite












I'm training a model as:



with tf.Graph().as_default():
with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
K.set_session(sess)
tf.train.create_global_step()
#with tf.device('/gpu:0:'):
m = GAReader.Model(nlayers, data.vocab_size, data.num_chars, W_init,
nhidden, embed_dim, dropout, train_emb,
char_dim, use_feat, gating_fn, words).build_network()
m.compile(optimizer=tf.train.AdamOptimizer(0.01),
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.categorical_accuracy])
tensorboard = TensorBoardCustom(log_dir="logs", sess=sess)
m.fit_generator(generator=batch_loader_train, steps_per_epoch=len(batch_loader_train.batch_pool), epochs=100, callbacks=[tensorboard])


and I defined a custom callback extending the keras.callbacks.Tensorboard as:



class TensorBoardCustom(TensorBoard):

def __init__(self, log_dir, sess, **kwargs):
super(TensorBoardCustom, self).__init__(log_dir, **kwargs)
self.sess = sess

def on_batch_end(self, batch, logs=):
summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(self.log_dir)
s = self.sess.run(summary)
writer.add_summary(s, batch)
writer.close()
super(TensorBoardCustom, self).on_batch_end(batch, logs)


and I'm adding a new summary as:



l_docin = tf.keras.layers.Input(shape=(None,))
with tf.name_scope('summaries'):
table = tf.contrib.lookup.index_to_string_table_from_tensor(
self.mapping_string, default_value="UNKNOWN")
words = table.lookup(tf.cast(l_qin, tf.int64))
text = tf.reduce_join(words, 1, separator=' ')
tf.summary.text('text', text)


However, this is not working and I'm getting the following error:



InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_2' with dtype float and shape [?,?]
[[node input_2 = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


Can someone explain why this is happening and how I can correct it? Is there a simpler/better way of adding custom summaries?










share|improve this question



























    up vote
    0
    down vote

    favorite












    I'm training a model as:



    with tf.Graph().as_default():
    with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
    K.set_session(sess)
    tf.train.create_global_step()
    #with tf.device('/gpu:0:'):
    m = GAReader.Model(nlayers, data.vocab_size, data.num_chars, W_init,
    nhidden, embed_dim, dropout, train_emb,
    char_dim, use_feat, gating_fn, words).build_network()
    m.compile(optimizer=tf.train.AdamOptimizer(0.01),
    loss=tf.keras.losses.categorical_crossentropy,
    metrics=[tf.keras.metrics.categorical_accuracy])
    tensorboard = TensorBoardCustom(log_dir="logs", sess=sess)
    m.fit_generator(generator=batch_loader_train, steps_per_epoch=len(batch_loader_train.batch_pool), epochs=100, callbacks=[tensorboard])


    and I defined a custom callback extending the keras.callbacks.Tensorboard as:



    class TensorBoardCustom(TensorBoard):

    def __init__(self, log_dir, sess, **kwargs):
    super(TensorBoardCustom, self).__init__(log_dir, **kwargs)
    self.sess = sess

    def on_batch_end(self, batch, logs=):
    summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(self.log_dir)
    s = self.sess.run(summary)
    writer.add_summary(s, batch)
    writer.close()
    super(TensorBoardCustom, self).on_batch_end(batch, logs)


    and I'm adding a new summary as:



    l_docin = tf.keras.layers.Input(shape=(None,))
    with tf.name_scope('summaries'):
    table = tf.contrib.lookup.index_to_string_table_from_tensor(
    self.mapping_string, default_value="UNKNOWN")
    words = table.lookup(tf.cast(l_qin, tf.int64))
    text = tf.reduce_join(words, 1, separator=' ')
    tf.summary.text('text', text)


    However, this is not working and I'm getting the following error:



    InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_2' with dtype float and shape [?,?]
    [[node input_2 = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


    Can someone explain why this is happening and how I can correct it? Is there a simpler/better way of adding custom summaries?










    share|improve this question

























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm training a model as:



      with tf.Graph().as_default():
      with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
      K.set_session(sess)
      tf.train.create_global_step()
      #with tf.device('/gpu:0:'):
      m = GAReader.Model(nlayers, data.vocab_size, data.num_chars, W_init,
      nhidden, embed_dim, dropout, train_emb,
      char_dim, use_feat, gating_fn, words).build_network()
      m.compile(optimizer=tf.train.AdamOptimizer(0.01),
      loss=tf.keras.losses.categorical_crossentropy,
      metrics=[tf.keras.metrics.categorical_accuracy])
      tensorboard = TensorBoardCustom(log_dir="logs", sess=sess)
      m.fit_generator(generator=batch_loader_train, steps_per_epoch=len(batch_loader_train.batch_pool), epochs=100, callbacks=[tensorboard])


      and I defined a custom callback extending the keras.callbacks.Tensorboard as:



      class TensorBoardCustom(TensorBoard):

      def __init__(self, log_dir, sess, **kwargs):
      super(TensorBoardCustom, self).__init__(log_dir, **kwargs)
      self.sess = sess

      def on_batch_end(self, batch, logs=):
      summary = tf.summary.merge_all()
      writer = tf.summary.FileWriter(self.log_dir)
      s = self.sess.run(summary)
      writer.add_summary(s, batch)
      writer.close()
      super(TensorBoardCustom, self).on_batch_end(batch, logs)


      and I'm adding a new summary as:



      l_docin = tf.keras.layers.Input(shape=(None,))
      with tf.name_scope('summaries'):
      table = tf.contrib.lookup.index_to_string_table_from_tensor(
      self.mapping_string, default_value="UNKNOWN")
      words = table.lookup(tf.cast(l_qin, tf.int64))
      text = tf.reduce_join(words, 1, separator=' ')
      tf.summary.text('text', text)


      However, this is not working and I'm getting the following error:



      InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_2' with dtype float and shape [?,?]
      [[node input_2 = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


      Can someone explain why this is happening and how I can correct it? Is there a simpler/better way of adding custom summaries?










      share|improve this question















      I'm training a model as:



      with tf.Graph().as_default():
      with tf.Session(config=tf.ConfigProto(allow_soft_placement = True)) as sess:
      K.set_session(sess)
      tf.train.create_global_step()
      #with tf.device('/gpu:0:'):
      m = GAReader.Model(nlayers, data.vocab_size, data.num_chars, W_init,
      nhidden, embed_dim, dropout, train_emb,
      char_dim, use_feat, gating_fn, words).build_network()
      m.compile(optimizer=tf.train.AdamOptimizer(0.01),
      loss=tf.keras.losses.categorical_crossentropy,
      metrics=[tf.keras.metrics.categorical_accuracy])
      tensorboard = TensorBoardCustom(log_dir="logs", sess=sess)
      m.fit_generator(generator=batch_loader_train, steps_per_epoch=len(batch_loader_train.batch_pool), epochs=100, callbacks=[tensorboard])


      and I defined a custom callback extending the keras.callbacks.Tensorboard as:



      class TensorBoardCustom(TensorBoard):

      def __init__(self, log_dir, sess, **kwargs):
      super(TensorBoardCustom, self).__init__(log_dir, **kwargs)
      self.sess = sess

      def on_batch_end(self, batch, logs=):
      summary = tf.summary.merge_all()
      writer = tf.summary.FileWriter(self.log_dir)
      s = self.sess.run(summary)
      writer.add_summary(s, batch)
      writer.close()
      super(TensorBoardCustom, self).on_batch_end(batch, logs)


      and I'm adding a new summary as:



      l_docin = tf.keras.layers.Input(shape=(None,))
      with tf.name_scope('summaries'):
      table = tf.contrib.lookup.index_to_string_table_from_tensor(
      self.mapping_string, default_value="UNKNOWN")
      words = table.lookup(tf.cast(l_qin, tf.int64))
      text = tf.reduce_join(words, 1, separator=' ')
      tf.summary.text('text', text)


      However, this is not working and I'm getting the following error:



      InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_2' with dtype float and shape [?,?]
      [[node input_2 = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


      Can someone explain why this is happening and how I can correct it? Is there a simpler/better way of adding custom summaries?







      python tensorflow machine-learning keras






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 11 at 5:23

























      asked Nov 10 at 6:04









      obh

      12128




      12128



























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53236430%2fhow-to-add-custom-summaries-to-tensorboard-when-training-with-tf-keras-model-fit%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53236430%2fhow-to-add-custom-summaries-to-tensorboard-when-training-with-tf-keras-model-fit%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Use pre created SQLite database for Android project in kotlin

          Darth Vader #20

          Ondo