calculating topdown/birds eye map from images with a sequence of poses
I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.
camera setup
sample image
I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.
road markers in generated map are not parallel
I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.
I have 2 questions:
The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?
I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's
warpPerspective
function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?
My code
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include <fstream>
#include <map>
#include <numeric>
#define HEIGHT 1.65
using namespace Eigen;
using namespace std;
bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
bool hasPose = false;
if(f.peek() != EOF)
hasPose = true;
for (int i = 0; i < 12; ++i)
float v;
f >> v;
int y = i / 4;
int x = i % 4;
pose(y, x) = v;
return hasPose;
MatrixXf getPMatrix()
MatrixXf P(3, 4);
P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
return P;
VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
Matrix4f pose2 = Matrix4f::Zero();
pose2.topLeftCorner<3, 4>() = pose;
pose2(3, 3) = 1;
MatrixXf pose3 = pose2.inverse();
Vector3f imagePoint(u, v, 1);
MatrixXf R = pose3.topLeftCorner<3,3>();
VectorXf t = pose3.col(3).head(3);
MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
MatrixXf rMatrix = R.inverse() * t;
float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);
return realWorld;
typedef map<long, map<int, int> > CellAssign;
int main(){
const int size = 1000;
const float resolution = 0.1;
const float minX = -50;
const float minY = -50;
string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";
ifstream pose_file;
pose_file.open("/ext/data/odometry/dataset/poses/04.txt");
if (!pose_file)
cerr << "Cannot open pose file" << endl;
MatrixXf proj = getPMatrix() ;
bool hasPose = true;
int frameNum = 0;
map<pair<int, int>, CellAssign> patchMapping;
while (hasPose)
MatrixXf pose(3,4);
hasPose = nextPose(pose_file, pose);
int pad = 6 - to_string(frameNum).length();
stringstream filename;
filename << labelDir << string(pad, '0') << frameNum << ".png";
cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
cv::Size shape = img.size();
for (int row = 0; row < shape.height; row++)
for (int col = 0; col < shape.width; col++)
uint8_t label = img.at<uchar>(row, col);
// if (label == 24)
if (row > 250)
//convert u,v coordinate to world coordinate
VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);
//calculate which cell inside map
int patchX = realWorld(0) / (resolution * size);
int patchY = realWorld(2) / (resolution * size);
int cellX = fmod(realWorld(0), resolution * size) / resolution;
int cellY = fmod(realWorld(2), resolution * size) / resolution;
cellX =(500 + cellX) % size;
// cellY =(500 + cellY) % size;
if (cellX < 0)
cout << "less 0" << endl;
continue;
pair<int, int> gp = patchX, patchY;
long cellId = cellX * size + cellY;
patchMapping.insert(gp, CellAssign());
patchMapping[gp].insert(cellId, map<int, int>());
patchMapping[gp][cellId].insert((int)label, 0);
patchMapping[gp][cellId][label]++;
//TODO: remove this
frameNum++;
if (frameNum > 50)
break;
for (const auto &it: patchMapping)
int x = it.first.first;
int y = it.first.second;
const CellAssign &ca = it.second;
cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);
int maxPts = 0;
for (const auto &it2: ca)
long cellId = it2.first;
const map<int, int> &pointMap = it2.second;
int cellX = cellId % size;
int cellY = cellId / size;
int maxLabel = -1;
int maxCount = -1;
for(auto &maxIter: pointMap)
if (maxCount < maxIter.second)
maxCount = maxIter.second;
maxLabel = maxIter.first;
//uint8_t label = points[points.size()-1];
if (maxLabel == 24)
mapArea.at<uchar>(cellX, cellY) = 255;
else
mapArea.at<uchar>(cellX, cellY) = 128;
stringstream filename;
filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
cv::flip(mapArea, mapAreaF, 0);
cv::imwrite(filename.str(), mapAreaF);
return 0;
c++ opencv computer-vision perspectivecamera
add a comment |
I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.
camera setup
sample image
I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.
road markers in generated map are not parallel
I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.
I have 2 questions:
The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?
I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's
warpPerspective
function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?
My code
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include <fstream>
#include <map>
#include <numeric>
#define HEIGHT 1.65
using namespace Eigen;
using namespace std;
bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
bool hasPose = false;
if(f.peek() != EOF)
hasPose = true;
for (int i = 0; i < 12; ++i)
float v;
f >> v;
int y = i / 4;
int x = i % 4;
pose(y, x) = v;
return hasPose;
MatrixXf getPMatrix()
MatrixXf P(3, 4);
P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
return P;
VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
Matrix4f pose2 = Matrix4f::Zero();
pose2.topLeftCorner<3, 4>() = pose;
pose2(3, 3) = 1;
MatrixXf pose3 = pose2.inverse();
Vector3f imagePoint(u, v, 1);
MatrixXf R = pose3.topLeftCorner<3,3>();
VectorXf t = pose3.col(3).head(3);
MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
MatrixXf rMatrix = R.inverse() * t;
float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);
return realWorld;
typedef map<long, map<int, int> > CellAssign;
int main(){
const int size = 1000;
const float resolution = 0.1;
const float minX = -50;
const float minY = -50;
string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";
ifstream pose_file;
pose_file.open("/ext/data/odometry/dataset/poses/04.txt");
if (!pose_file)
cerr << "Cannot open pose file" << endl;
MatrixXf proj = getPMatrix() ;
bool hasPose = true;
int frameNum = 0;
map<pair<int, int>, CellAssign> patchMapping;
while (hasPose)
MatrixXf pose(3,4);
hasPose = nextPose(pose_file, pose);
int pad = 6 - to_string(frameNum).length();
stringstream filename;
filename << labelDir << string(pad, '0') << frameNum << ".png";
cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
cv::Size shape = img.size();
for (int row = 0; row < shape.height; row++)
for (int col = 0; col < shape.width; col++)
uint8_t label = img.at<uchar>(row, col);
// if (label == 24)
if (row > 250)
//convert u,v coordinate to world coordinate
VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);
//calculate which cell inside map
int patchX = realWorld(0) / (resolution * size);
int patchY = realWorld(2) / (resolution * size);
int cellX = fmod(realWorld(0), resolution * size) / resolution;
int cellY = fmod(realWorld(2), resolution * size) / resolution;
cellX =(500 + cellX) % size;
// cellY =(500 + cellY) % size;
if (cellX < 0)
cout << "less 0" << endl;
continue;
pair<int, int> gp = patchX, patchY;
long cellId = cellX * size + cellY;
patchMapping.insert(gp, CellAssign());
patchMapping[gp].insert(cellId, map<int, int>());
patchMapping[gp][cellId].insert((int)label, 0);
patchMapping[gp][cellId][label]++;
//TODO: remove this
frameNum++;
if (frameNum > 50)
break;
for (const auto &it: patchMapping)
int x = it.first.first;
int y = it.first.second;
const CellAssign &ca = it.second;
cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);
int maxPts = 0;
for (const auto &it2: ca)
long cellId = it2.first;
const map<int, int> &pointMap = it2.second;
int cellX = cellId % size;
int cellY = cellId / size;
int maxLabel = -1;
int maxCount = -1;
for(auto &maxIter: pointMap)
if (maxCount < maxIter.second)
maxCount = maxIter.second;
maxLabel = maxIter.first;
//uint8_t label = points[points.size()-1];
if (maxLabel == 24)
mapArea.at<uchar>(cellX, cellY) = 255;
else
mapArea.at<uchar>(cellX, cellY) = 128;
stringstream filename;
filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
cv::flip(mapArea, mapAreaF, 0);
cv::imwrite(filename.str(), mapAreaF);
return 0;
c++ opencv computer-vision perspectivecamera
add a comment |
I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.
camera setup
sample image
I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.
road markers in generated map are not parallel
I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.
I have 2 questions:
The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?
I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's
warpPerspective
function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?
My code
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include <fstream>
#include <map>
#include <numeric>
#define HEIGHT 1.65
using namespace Eigen;
using namespace std;
bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
bool hasPose = false;
if(f.peek() != EOF)
hasPose = true;
for (int i = 0; i < 12; ++i)
float v;
f >> v;
int y = i / 4;
int x = i % 4;
pose(y, x) = v;
return hasPose;
MatrixXf getPMatrix()
MatrixXf P(3, 4);
P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
return P;
VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
Matrix4f pose2 = Matrix4f::Zero();
pose2.topLeftCorner<3, 4>() = pose;
pose2(3, 3) = 1;
MatrixXf pose3 = pose2.inverse();
Vector3f imagePoint(u, v, 1);
MatrixXf R = pose3.topLeftCorner<3,3>();
VectorXf t = pose3.col(3).head(3);
MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
MatrixXf rMatrix = R.inverse() * t;
float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);
return realWorld;
typedef map<long, map<int, int> > CellAssign;
int main(){
const int size = 1000;
const float resolution = 0.1;
const float minX = -50;
const float minY = -50;
string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";
ifstream pose_file;
pose_file.open("/ext/data/odometry/dataset/poses/04.txt");
if (!pose_file)
cerr << "Cannot open pose file" << endl;
MatrixXf proj = getPMatrix() ;
bool hasPose = true;
int frameNum = 0;
map<pair<int, int>, CellAssign> patchMapping;
while (hasPose)
MatrixXf pose(3,4);
hasPose = nextPose(pose_file, pose);
int pad = 6 - to_string(frameNum).length();
stringstream filename;
filename << labelDir << string(pad, '0') << frameNum << ".png";
cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
cv::Size shape = img.size();
for (int row = 0; row < shape.height; row++)
for (int col = 0; col < shape.width; col++)
uint8_t label = img.at<uchar>(row, col);
// if (label == 24)
if (row > 250)
//convert u,v coordinate to world coordinate
VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);
//calculate which cell inside map
int patchX = realWorld(0) / (resolution * size);
int patchY = realWorld(2) / (resolution * size);
int cellX = fmod(realWorld(0), resolution * size) / resolution;
int cellY = fmod(realWorld(2), resolution * size) / resolution;
cellX =(500 + cellX) % size;
// cellY =(500 + cellY) % size;
if (cellX < 0)
cout << "less 0" << endl;
continue;
pair<int, int> gp = patchX, patchY;
long cellId = cellX * size + cellY;
patchMapping.insert(gp, CellAssign());
patchMapping[gp].insert(cellId, map<int, int>());
patchMapping[gp][cellId].insert((int)label, 0);
patchMapping[gp][cellId][label]++;
//TODO: remove this
frameNum++;
if (frameNum > 50)
break;
for (const auto &it: patchMapping)
int x = it.first.first;
int y = it.first.second;
const CellAssign &ca = it.second;
cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);
int maxPts = 0;
for (const auto &it2: ca)
long cellId = it2.first;
const map<int, int> &pointMap = it2.second;
int cellX = cellId % size;
int cellY = cellId / size;
int maxLabel = -1;
int maxCount = -1;
for(auto &maxIter: pointMap)
if (maxCount < maxIter.second)
maxCount = maxIter.second;
maxLabel = maxIter.first;
//uint8_t label = points[points.size()-1];
if (maxLabel == 24)
mapArea.at<uchar>(cellX, cellY) = 255;
else
mapArea.at<uchar>(cellX, cellY) = 128;
stringstream filename;
filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
cv::flip(mapArea, mapAreaF, 0);
cv::imwrite(filename.str(), mapAreaF);
return 0;
c++ opencv computer-vision perspectivecamera
I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.
camera setup
sample image
I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.
road markers in generated map are not parallel
I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.
I have 2 questions:
The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?
I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's
warpPerspective
function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?
My code
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include <fstream>
#include <map>
#include <numeric>
#define HEIGHT 1.65
using namespace Eigen;
using namespace std;
bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
bool hasPose = false;
if(f.peek() != EOF)
hasPose = true;
for (int i = 0; i < 12; ++i)
float v;
f >> v;
int y = i / 4;
int x = i % 4;
pose(y, x) = v;
return hasPose;
MatrixXf getPMatrix()
MatrixXf P(3, 4);
P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
return P;
VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
Matrix4f pose2 = Matrix4f::Zero();
pose2.topLeftCorner<3, 4>() = pose;
pose2(3, 3) = 1;
MatrixXf pose3 = pose2.inverse();
Vector3f imagePoint(u, v, 1);
MatrixXf R = pose3.topLeftCorner<3,3>();
VectorXf t = pose3.col(3).head(3);
MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
MatrixXf rMatrix = R.inverse() * t;
float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);
return realWorld;
typedef map<long, map<int, int> > CellAssign;
int main(){
const int size = 1000;
const float resolution = 0.1;
const float minX = -50;
const float minY = -50;
string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";
ifstream pose_file;
pose_file.open("/ext/data/odometry/dataset/poses/04.txt");
if (!pose_file)
cerr << "Cannot open pose file" << endl;
MatrixXf proj = getPMatrix() ;
bool hasPose = true;
int frameNum = 0;
map<pair<int, int>, CellAssign> patchMapping;
while (hasPose)
MatrixXf pose(3,4);
hasPose = nextPose(pose_file, pose);
int pad = 6 - to_string(frameNum).length();
stringstream filename;
filename << labelDir << string(pad, '0') << frameNum << ".png";
cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
cv::Size shape = img.size();
for (int row = 0; row < shape.height; row++)
for (int col = 0; col < shape.width; col++)
uint8_t label = img.at<uchar>(row, col);
// if (label == 24)
if (row > 250)
//convert u,v coordinate to world coordinate
VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);
//calculate which cell inside map
int patchX = realWorld(0) / (resolution * size);
int patchY = realWorld(2) / (resolution * size);
int cellX = fmod(realWorld(0), resolution * size) / resolution;
int cellY = fmod(realWorld(2), resolution * size) / resolution;
cellX =(500 + cellX) % size;
// cellY =(500 + cellY) % size;
if (cellX < 0)
cout << "less 0" << endl;
continue;
pair<int, int> gp = patchX, patchY;
long cellId = cellX * size + cellY;
patchMapping.insert(gp, CellAssign());
patchMapping[gp].insert(cellId, map<int, int>());
patchMapping[gp][cellId].insert((int)label, 0);
patchMapping[gp][cellId][label]++;
//TODO: remove this
frameNum++;
if (frameNum > 50)
break;
for (const auto &it: patchMapping)
int x = it.first.first;
int y = it.first.second;
const CellAssign &ca = it.second;
cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);
int maxPts = 0;
for (const auto &it2: ca)
long cellId = it2.first;
const map<int, int> &pointMap = it2.second;
int cellX = cellId % size;
int cellY = cellId / size;
int maxLabel = -1;
int maxCount = -1;
for(auto &maxIter: pointMap)
if (maxCount < maxIter.second)
maxCount = maxIter.second;
maxLabel = maxIter.first;
//uint8_t label = points[points.size()-1];
if (maxLabel == 24)
mapArea.at<uchar>(cellX, cellY) = 255;
else
mapArea.at<uchar>(cellX, cellY) = 128;
stringstream filename;
filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
cv::flip(mapArea, mapAreaF, 0);
cv::imwrite(filename.str(), mapAreaF);
return 0;
c++ opencv computer-vision perspectivecamera
c++ opencv computer-vision perspectivecamera
asked Nov 13 '18 at 0:42
avpavp
184
184
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272152%2fcalculating-topdown-birds-eye-map-from-images-with-a-sequence-of-poses%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272152%2fcalculating-topdown-birds-eye-map-from-images-with-a-sequence-of-poses%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown