calculating topdown/birds eye map from images with a sequence of poses










1















I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.



camera setup
sample image



I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.



road markers in generated map are not parallel



I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.



I have 2 questions:



  1. The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?


  2. I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's warpPerspective function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?


My code



#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include <fstream>
#include <map>
#include <numeric>

#define HEIGHT 1.65

using namespace Eigen;
using namespace std;

bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
bool hasPose = false;

if(f.peek() != EOF)
hasPose = true;
for (int i = 0; i < 12; ++i)
float v;
f >> v;
int y = i / 4;
int x = i % 4;
pose(y, x) = v;


return hasPose;


MatrixXf getPMatrix()
MatrixXf P(3, 4);
P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
return P;



VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
Matrix4f pose2 = Matrix4f::Zero();
pose2.topLeftCorner<3, 4>() = pose;
pose2(3, 3) = 1;
MatrixXf pose3 = pose2.inverse();


Vector3f imagePoint(u, v, 1);

MatrixXf R = pose3.topLeftCorner<3,3>();
VectorXf t = pose3.col(3).head(3);

MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
MatrixXf rMatrix = R.inverse() * t;

float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);

return realWorld;



typedef map<long, map<int, int> > CellAssign;

int main(){
const int size = 1000;
const float resolution = 0.1;
const float minX = -50;
const float minY = -50;

string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";

ifstream pose_file;
pose_file.open("/ext/data/odometry/dataset/poses/04.txt");

if (!pose_file)
cerr << "Cannot open pose file" << endl;


MatrixXf proj = getPMatrix() ;

bool hasPose = true;
int frameNum = 0;

map<pair<int, int>, CellAssign> patchMapping;

while (hasPose)
MatrixXf pose(3,4);
hasPose = nextPose(pose_file, pose);

int pad = 6 - to_string(frameNum).length();
stringstream filename;
filename << labelDir << string(pad, '0') << frameNum << ".png";

cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
cv::Size shape = img.size();

for (int row = 0; row < shape.height; row++)
for (int col = 0; col < shape.width; col++)
uint8_t label = img.at<uchar>(row, col);

// if (label == 24)
if (row > 250)
//convert u,v coordinate to world coordinate
VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);

//calculate which cell inside map
int patchX = realWorld(0) / (resolution * size);
int patchY = realWorld(2) / (resolution * size);
int cellX = fmod(realWorld(0), resolution * size) / resolution;
int cellY = fmod(realWorld(2), resolution * size) / resolution;
cellX =(500 + cellX) % size;
// cellY =(500 + cellY) % size;

if (cellX < 0)
cout << "less 0" << endl;
continue;


pair<int, int> gp = patchX, patchY;
long cellId = cellX * size + cellY;

patchMapping.insert(gp, CellAssign());
patchMapping[gp].insert(cellId, map<int, int>());
patchMapping[gp][cellId].insert((int)label, 0);

patchMapping[gp][cellId][label]++;






//TODO: remove this
frameNum++;
if (frameNum > 50)
break;


for (const auto &it: patchMapping)
int x = it.first.first;
int y = it.first.second;
const CellAssign &ca = it.second;

cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);

int maxPts = 0;

for (const auto &it2: ca)
long cellId = it2.first;
const map<int, int> &pointMap = it2.second;

int cellX = cellId % size;
int cellY = cellId / size;

int maxLabel = -1;
int maxCount = -1;

for(auto &maxIter: pointMap)
if (maxCount < maxIter.second)
maxCount = maxIter.second;
maxLabel = maxIter.first;



//uint8_t label = points[points.size()-1];
if (maxLabel == 24)
mapArea.at<uchar>(cellX, cellY) = 255;
else
mapArea.at<uchar>(cellX, cellY) = 128;



stringstream filename;

filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
cv::flip(mapArea, mapAreaF, 0);
cv::imwrite(filename.str(), mapAreaF);


return 0;










share|improve this question


























    1















    I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.



    camera setup
    sample image



    I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.



    road markers in generated map are not parallel



    I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.



    I have 2 questions:



    1. The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?


    2. I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's warpPerspective function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?


    My code



    #include <string>
    #include <opencv2/opencv.hpp>
    #include <Eigen/Dense>
    #include <fstream>
    #include <map>
    #include <numeric>

    #define HEIGHT 1.65

    using namespace Eigen;
    using namespace std;

    bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
    bool hasPose = false;

    if(f.peek() != EOF)
    hasPose = true;
    for (int i = 0; i < 12; ++i)
    float v;
    f >> v;
    int y = i / 4;
    int x = i % 4;
    pose(y, x) = v;


    return hasPose;


    MatrixXf getPMatrix()
    MatrixXf P(3, 4);
    P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
    0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
    0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
    return P;



    VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
    Matrix4f pose2 = Matrix4f::Zero();
    pose2.topLeftCorner<3, 4>() = pose;
    pose2(3, 3) = 1;
    MatrixXf pose3 = pose2.inverse();


    Vector3f imagePoint(u, v, 1);

    MatrixXf R = pose3.topLeftCorner<3,3>();
    VectorXf t = pose3.col(3).head(3);

    MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
    MatrixXf rMatrix = R.inverse() * t;

    float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
    VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);

    return realWorld;



    typedef map<long, map<int, int> > CellAssign;

    int main(){
    const int size = 1000;
    const float resolution = 0.1;
    const float minX = -50;
    const float minY = -50;

    string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";

    ifstream pose_file;
    pose_file.open("/ext/data/odometry/dataset/poses/04.txt");

    if (!pose_file)
    cerr << "Cannot open pose file" << endl;


    MatrixXf proj = getPMatrix() ;

    bool hasPose = true;
    int frameNum = 0;

    map<pair<int, int>, CellAssign> patchMapping;

    while (hasPose)
    MatrixXf pose(3,4);
    hasPose = nextPose(pose_file, pose);

    int pad = 6 - to_string(frameNum).length();
    stringstream filename;
    filename << labelDir << string(pad, '0') << frameNum << ".png";

    cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
    cv::Size shape = img.size();

    for (int row = 0; row < shape.height; row++)
    for (int col = 0; col < shape.width; col++)
    uint8_t label = img.at<uchar>(row, col);

    // if (label == 24)
    if (row > 250)
    //convert u,v coordinate to world coordinate
    VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);

    //calculate which cell inside map
    int patchX = realWorld(0) / (resolution * size);
    int patchY = realWorld(2) / (resolution * size);
    int cellX = fmod(realWorld(0), resolution * size) / resolution;
    int cellY = fmod(realWorld(2), resolution * size) / resolution;
    cellX =(500 + cellX) % size;
    // cellY =(500 + cellY) % size;

    if (cellX < 0)
    cout << "less 0" << endl;
    continue;


    pair<int, int> gp = patchX, patchY;
    long cellId = cellX * size + cellY;

    patchMapping.insert(gp, CellAssign());
    patchMapping[gp].insert(cellId, map<int, int>());
    patchMapping[gp][cellId].insert((int)label, 0);

    patchMapping[gp][cellId][label]++;






    //TODO: remove this
    frameNum++;
    if (frameNum > 50)
    break;


    for (const auto &it: patchMapping)
    int x = it.first.first;
    int y = it.first.second;
    const CellAssign &ca = it.second;

    cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);

    int maxPts = 0;

    for (const auto &it2: ca)
    long cellId = it2.first;
    const map<int, int> &pointMap = it2.second;

    int cellX = cellId % size;
    int cellY = cellId / size;

    int maxLabel = -1;
    int maxCount = -1;

    for(auto &maxIter: pointMap)
    if (maxCount < maxIter.second)
    maxCount = maxIter.second;
    maxLabel = maxIter.first;



    //uint8_t label = points[points.size()-1];
    if (maxLabel == 24)
    mapArea.at<uchar>(cellX, cellY) = 255;
    else
    mapArea.at<uchar>(cellX, cellY) = 128;



    stringstream filename;

    filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
    cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
    cv::flip(mapArea, mapAreaF, 0);
    cv::imwrite(filename.str(), mapAreaF);


    return 0;










    share|improve this question
























      1












      1








      1








      I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.



      camera setup
      sample image



      I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.



      road markers in generated map are not parallel



      I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.



      I have 2 questions:



      1. The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?


      2. I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's warpPerspective function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?


      My code



      #include <string>
      #include <opencv2/opencv.hpp>
      #include <Eigen/Dense>
      #include <fstream>
      #include <map>
      #include <numeric>

      #define HEIGHT 1.65

      using namespace Eigen;
      using namespace std;

      bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
      bool hasPose = false;

      if(f.peek() != EOF)
      hasPose = true;
      for (int i = 0; i < 12; ++i)
      float v;
      f >> v;
      int y = i / 4;
      int x = i % 4;
      pose(y, x) = v;


      return hasPose;


      MatrixXf getPMatrix()
      MatrixXf P(3, 4);
      P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
      0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
      0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
      return P;



      VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
      Matrix4f pose2 = Matrix4f::Zero();
      pose2.topLeftCorner<3, 4>() = pose;
      pose2(3, 3) = 1;
      MatrixXf pose3 = pose2.inverse();


      Vector3f imagePoint(u, v, 1);

      MatrixXf R = pose3.topLeftCorner<3,3>();
      VectorXf t = pose3.col(3).head(3);

      MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
      MatrixXf rMatrix = R.inverse() * t;

      float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
      VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);

      return realWorld;



      typedef map<long, map<int, int> > CellAssign;

      int main(){
      const int size = 1000;
      const float resolution = 0.1;
      const float minX = -50;
      const float minY = -50;

      string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";

      ifstream pose_file;
      pose_file.open("/ext/data/odometry/dataset/poses/04.txt");

      if (!pose_file)
      cerr << "Cannot open pose file" << endl;


      MatrixXf proj = getPMatrix() ;

      bool hasPose = true;
      int frameNum = 0;

      map<pair<int, int>, CellAssign> patchMapping;

      while (hasPose)
      MatrixXf pose(3,4);
      hasPose = nextPose(pose_file, pose);

      int pad = 6 - to_string(frameNum).length();
      stringstream filename;
      filename << labelDir << string(pad, '0') << frameNum << ".png";

      cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
      cv::Size shape = img.size();

      for (int row = 0; row < shape.height; row++)
      for (int col = 0; col < shape.width; col++)
      uint8_t label = img.at<uchar>(row, col);

      // if (label == 24)
      if (row > 250)
      //convert u,v coordinate to world coordinate
      VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);

      //calculate which cell inside map
      int patchX = realWorld(0) / (resolution * size);
      int patchY = realWorld(2) / (resolution * size);
      int cellX = fmod(realWorld(0), resolution * size) / resolution;
      int cellY = fmod(realWorld(2), resolution * size) / resolution;
      cellX =(500 + cellX) % size;
      // cellY =(500 + cellY) % size;

      if (cellX < 0)
      cout << "less 0" << endl;
      continue;


      pair<int, int> gp = patchX, patchY;
      long cellId = cellX * size + cellY;

      patchMapping.insert(gp, CellAssign());
      patchMapping[gp].insert(cellId, map<int, int>());
      patchMapping[gp][cellId].insert((int)label, 0);

      patchMapping[gp][cellId][label]++;






      //TODO: remove this
      frameNum++;
      if (frameNum > 50)
      break;


      for (const auto &it: patchMapping)
      int x = it.first.first;
      int y = it.first.second;
      const CellAssign &ca = it.second;

      cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);

      int maxPts = 0;

      for (const auto &it2: ca)
      long cellId = it2.first;
      const map<int, int> &pointMap = it2.second;

      int cellX = cellId % size;
      int cellY = cellId / size;

      int maxLabel = -1;
      int maxCount = -1;

      for(auto &maxIter: pointMap)
      if (maxCount < maxIter.second)
      maxCount = maxIter.second;
      maxLabel = maxIter.first;



      //uint8_t label = points[points.size()-1];
      if (maxLabel == 24)
      mapArea.at<uchar>(cellX, cellY) = 255;
      else
      mapArea.at<uchar>(cellX, cellY) = 128;



      stringstream filename;

      filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
      cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
      cv::flip(mapArea, mapAreaF, 0);
      cv::imwrite(filename.str(), mapAreaF);


      return 0;










      share|improve this question














      I am trying to build a topdown birds eye map of the road surfaces from a sequences of images, each which I know the ground truth poses. The data is from the KITTI dataset, of which I know the distance of the camera from the ground surface. I have included a sample image from the dataset.



      camera setup
      sample image



      I compute the real world coordinates (see function imageToWorldPoints below) based on the equations here, in which I calculated the scale based on the supposed height of camera from the ground, the projection matrix and the camera poses. I then simply fit them into a 0.1m resolution grid map.



      road markers in generated map are not parallel



      I am not allowed to embed images yet, but as you can see in the link above, my generated map is grossly out of "scale". White pixels are the road markers. The markers in the higher Ys (bottom rows) are the ones closer to the camera, and that are generated in the earlier poses. So you can imagine the camera is moving upwards from the bottom of the image. The lanes are supposed to be parallel, but here I got a cone-shape instead.



      I have 2 questions:



      1. The reference frame is the pose of the camera in the first sequence. My hypothesis is that reason for this cone-shape is due to the reference frame's axis not being parallel to the road surface, leading to poor miscalculation of the scale for points far away. Is this valid?


      2. I noticed another way of mapping to bird's eye view is to map 4 points on the road to a rectangle, and then use opencv's warpPerspective function to generate the bird's eye view. What is the difference between this, and my method above? Will this solve the cone-shape behavior?


      My code



      #include <string>
      #include <opencv2/opencv.hpp>
      #include <Eigen/Dense>
      #include <fstream>
      #include <map>
      #include <numeric>

      #define HEIGHT 1.65

      using namespace Eigen;
      using namespace std;

      bool nextPose(ifstream &f, Eigen::MatrixXf& pose)
      bool hasPose = false;

      if(f.peek() != EOF)
      hasPose = true;
      for (int i = 0; i < 12; ++i)
      float v;
      f >> v;
      int y = i / 4;
      int x = i % 4;
      pose(y, x) = v;


      return hasPose;


      MatrixXf getPMatrix()
      MatrixXf P(3, 4);
      P << 7.070912000000e+02, 0.000000000000e+00, 6.018873000000e+02, 4.688783000000e+01,
      0.000000000000e+00, 7.070912000000e+02, 1.831104000000e+02, 1.178601000000e-01,
      0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 6.203223000000e-03;
      return P;



      VectorXf imageToWorldPoints(float u, float v, const MatrixXf& pose, const MatrixXf& proj)
      Matrix4f pose2 = Matrix4f::Zero();
      pose2.topLeftCorner<3, 4>() = pose;
      pose2(3, 3) = 1;
      MatrixXf pose3 = pose2.inverse();


      Vector3f imagePoint(u, v, 1);

      MatrixXf R = pose3.topLeftCorner<3,3>();
      VectorXf t = pose3.col(3).head(3);

      MatrixXf lMatrix = R.inverse() * proj.topLeftCorner<3,3>().inverse() * imagePoint;
      MatrixXf rMatrix = R.inverse() * t;

      float s = (HEIGHT + rMatrix(1, 0)) / lMatrix(1, 0);
      VectorXf realWorld = R.inverse() * (s * proj.topLeftCorner<3,3>().inverse() * imagePoint - t);

      return realWorld;



      typedef map<long, map<int, int> > CellAssign;

      int main(){
      const int size = 1000;
      const float resolution = 0.1;
      const float minX = -50;
      const float minY = -50;

      string labelDir = "/home/cy/Desktop/Kitti_segmented/resize/results/";

      ifstream pose_file;
      pose_file.open("/ext/data/odometry/dataset/poses/04.txt");

      if (!pose_file)
      cerr << "Cannot open pose file" << endl;


      MatrixXf proj = getPMatrix() ;

      bool hasPose = true;
      int frameNum = 0;

      map<pair<int, int>, CellAssign> patchMapping;

      while (hasPose)
      MatrixXf pose(3,4);
      hasPose = nextPose(pose_file, pose);

      int pad = 6 - to_string(frameNum).length();
      stringstream filename;
      filename << labelDir << string(pad, '0') << frameNum << ".png";

      cv::Mat img = cv::imread(filename.str(), CV_LOAD_IMAGE_GRAYSCALE);
      cv::Size shape = img.size();

      for (int row = 0; row < shape.height; row++)
      for (int col = 0; col < shape.width; col++)
      uint8_t label = img.at<uchar>(row, col);

      // if (label == 24)
      if (row > 250)
      //convert u,v coordinate to world coordinate
      VectorXf realWorld = imageToWorldPoints(col, row, pose, proj);

      //calculate which cell inside map
      int patchX = realWorld(0) / (resolution * size);
      int patchY = realWorld(2) / (resolution * size);
      int cellX = fmod(realWorld(0), resolution * size) / resolution;
      int cellY = fmod(realWorld(2), resolution * size) / resolution;
      cellX =(500 + cellX) % size;
      // cellY =(500 + cellY) % size;

      if (cellX < 0)
      cout << "less 0" << endl;
      continue;


      pair<int, int> gp = patchX, patchY;
      long cellId = cellX * size + cellY;

      patchMapping.insert(gp, CellAssign());
      patchMapping[gp].insert(cellId, map<int, int>());
      patchMapping[gp][cellId].insert((int)label, 0);

      patchMapping[gp][cellId][label]++;






      //TODO: remove this
      frameNum++;
      if (frameNum > 50)
      break;


      for (const auto &it: patchMapping)
      int x = it.first.first;
      int y = it.first.second;
      const CellAssign &ca = it.second;

      cv::Mat mapArea = cv::Mat::zeros(size, size, CV_8UC1);

      int maxPts = 0;

      for (const auto &it2: ca)
      long cellId = it2.first;
      const map<int, int> &pointMap = it2.second;

      int cellX = cellId % size;
      int cellY = cellId / size;

      int maxLabel = -1;
      int maxCount = -1;

      for(auto &maxIter: pointMap)
      if (maxCount < maxIter.second)
      maxCount = maxIter.second;
      maxLabel = maxIter.first;



      //uint8_t label = points[points.size()-1];
      if (maxLabel == 24)
      mapArea.at<uchar>(cellX, cellY) = 255;
      else
      mapArea.at<uchar>(cellX, cellY) = 128;



      stringstream filename;

      filename << "/home/cy/Desktop/x" << x << "_y_" << y << ".png";
      cv::Mat mapAreaF = cv::Mat::zeros(size, size, CV_8UC1);
      cv::flip(mapArea, mapAreaF, 0);
      cv::imwrite(filename.str(), mapAreaF);


      return 0;







      c++ opencv computer-vision perspectivecamera






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 13 '18 at 0:42









      avpavp

      184




      184






















          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272152%2fcalculating-topdown-birds-eye-map-from-images-with-a-sequence-of-poses%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53272152%2fcalculating-topdown-birds-eye-map-from-images-with-a-sequence-of-poses%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Use pre created SQLite database for Android project in kotlin

          Darth Vader #20

          Ondo