How to find Top features from Naive Bayes using sklearn pipeline
How to find Top features from Naive Bayes using sklearn pipeline
Hi all,
I am trying to apply Naive Bayes(MultinomialNB ) using pipelines and i came up with the code. However I am interested in finding top 10 positve and negative words , but not able to succeed. when I searched , I got the code for finding top features which i mentioned below. However when i tried using the code using pipeline i am getting the error which i mentioned below. I tried searching exhaustively , but got the code without using pipeline.But when i use the code with my output from pipeline, it is not working. COuld you please help me on how to find feature importance from pipeline output.
# Pipeline dictionary
pipelines =
'bow_MultinomialNB' : make_pipeline(
CountVectorizer(),
preprocessing.Normalizer(),
MultinomialNB()
)
# List tuneable hyperparameters of our pipeline
pipelines['bow_MultinomialNB'].get_params()
# BOW - MultinomialNB hyperparameters
bow_MultinomialNB_hyperparameters =
'multinomialnb__alpha' : [1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001]
# Create hyperparameters dictionary
hyperparameters =
'bow_MultinomialNB' : bow_MultinomialNB_hyperparameters
tscv = TimeSeriesSplit(n_splits=3) #For time based splitting
for name, pipeline in pipelines.items():
print("NAME:",name)
print("PIPELINE:",pipeline)
%time
# Create empty dictionary called fitted_models
fitted_models =
# Loop through model pipelines, tuning each one and saving it to fitted_models
for name, pipeline in pipelines.items():
# Create cross-validation object from pipeline and hyperparameters
model = GridSearchCV(pipeline, hyperparameters[name], cv=tscv, n_jobs=1,verbose=1)
# Fit model on X_train, y_train
model.fit(X_train, y_train)
# Store model in fitted_models[name]
fitted_models[name] = model
# Print 'name has been fitted'
print(name, 'has been fitted.')
FEAURE IMPORTANCE:-
pipelines['bow_MultinomialNB'].steps[2][1].classes__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-125-7d45b007e86b> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[2][1].classes_
AttributeError: 'MultinomialNB' object has no attribute 'classes_'
pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
<ipython-input-126-2883929221d1> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in get_feature_names(self)
958 def get_feature_names(self):
959 """Array mapping from feature integer indices to feature name"""
--> 960 self._check_vocabulary()
961
962 return [t for t, i in sorted(six.iteritems(self.vocabulary_),
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in _check_vocabulary(self)
301 """Check if vocabulary is empty or missing (not fit-ed)"""
302 msg = "%(name)s - Vocabulary wasn't fitted."
--> 303 check_is_fitted(self, 'vocabulary_', msg=msg),
304
305 if len(self.vocabulary_) == 0:
~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
766
767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 768 raise NotFittedError(msg % 'name': type(estimator).__name__)
769
770
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
x=pipelines['bow_MultinomialNB'].steps[0][1]._validate_vocabulary()
x.get_feature_names()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-120-f620c754a34e> in <module>()
----> 1 x.get_feature_names()
AttributeError: 'NoneType' object has no attribute 'get_feature_names'
Regards,
Shree
scikit-learn pipeline feature-extraction naivebayes
add a comment |
How to find Top features from Naive Bayes using sklearn pipeline
Hi all,
I am trying to apply Naive Bayes(MultinomialNB ) using pipelines and i came up with the code. However I am interested in finding top 10 positve and negative words , but not able to succeed. when I searched , I got the code for finding top features which i mentioned below. However when i tried using the code using pipeline i am getting the error which i mentioned below. I tried searching exhaustively , but got the code without using pipeline.But when i use the code with my output from pipeline, it is not working. COuld you please help me on how to find feature importance from pipeline output.
# Pipeline dictionary
pipelines =
'bow_MultinomialNB' : make_pipeline(
CountVectorizer(),
preprocessing.Normalizer(),
MultinomialNB()
)
# List tuneable hyperparameters of our pipeline
pipelines['bow_MultinomialNB'].get_params()
# BOW - MultinomialNB hyperparameters
bow_MultinomialNB_hyperparameters =
'multinomialnb__alpha' : [1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001]
# Create hyperparameters dictionary
hyperparameters =
'bow_MultinomialNB' : bow_MultinomialNB_hyperparameters
tscv = TimeSeriesSplit(n_splits=3) #For time based splitting
for name, pipeline in pipelines.items():
print("NAME:",name)
print("PIPELINE:",pipeline)
%time
# Create empty dictionary called fitted_models
fitted_models =
# Loop through model pipelines, tuning each one and saving it to fitted_models
for name, pipeline in pipelines.items():
# Create cross-validation object from pipeline and hyperparameters
model = GridSearchCV(pipeline, hyperparameters[name], cv=tscv, n_jobs=1,verbose=1)
# Fit model on X_train, y_train
model.fit(X_train, y_train)
# Store model in fitted_models[name]
fitted_models[name] = model
# Print 'name has been fitted'
print(name, 'has been fitted.')
FEAURE IMPORTANCE:-
pipelines['bow_MultinomialNB'].steps[2][1].classes__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-125-7d45b007e86b> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[2][1].classes_
AttributeError: 'MultinomialNB' object has no attribute 'classes_'
pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
<ipython-input-126-2883929221d1> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in get_feature_names(self)
958 def get_feature_names(self):
959 """Array mapping from feature integer indices to feature name"""
--> 960 self._check_vocabulary()
961
962 return [t for t, i in sorted(six.iteritems(self.vocabulary_),
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in _check_vocabulary(self)
301 """Check if vocabulary is empty or missing (not fit-ed)"""
302 msg = "%(name)s - Vocabulary wasn't fitted."
--> 303 check_is_fitted(self, 'vocabulary_', msg=msg),
304
305 if len(self.vocabulary_) == 0:
~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
766
767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 768 raise NotFittedError(msg % 'name': type(estimator).__name__)
769
770
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
x=pipelines['bow_MultinomialNB'].steps[0][1]._validate_vocabulary()
x.get_feature_names()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-120-f620c754a34e> in <module>()
----> 1 x.get_feature_names()
AttributeError: 'NoneType' object has no attribute 'get_feature_names'
Regards,
Shree
scikit-learn pipeline feature-extraction naivebayes
1
Is there a reason you're looking at thepipelines
object instead of the fitted model?
– Jarad
Nov 12 '18 at 3:38
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46
add a comment |
How to find Top features from Naive Bayes using sklearn pipeline
Hi all,
I am trying to apply Naive Bayes(MultinomialNB ) using pipelines and i came up with the code. However I am interested in finding top 10 positve and negative words , but not able to succeed. when I searched , I got the code for finding top features which i mentioned below. However when i tried using the code using pipeline i am getting the error which i mentioned below. I tried searching exhaustively , but got the code without using pipeline.But when i use the code with my output from pipeline, it is not working. COuld you please help me on how to find feature importance from pipeline output.
# Pipeline dictionary
pipelines =
'bow_MultinomialNB' : make_pipeline(
CountVectorizer(),
preprocessing.Normalizer(),
MultinomialNB()
)
# List tuneable hyperparameters of our pipeline
pipelines['bow_MultinomialNB'].get_params()
# BOW - MultinomialNB hyperparameters
bow_MultinomialNB_hyperparameters =
'multinomialnb__alpha' : [1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001]
# Create hyperparameters dictionary
hyperparameters =
'bow_MultinomialNB' : bow_MultinomialNB_hyperparameters
tscv = TimeSeriesSplit(n_splits=3) #For time based splitting
for name, pipeline in pipelines.items():
print("NAME:",name)
print("PIPELINE:",pipeline)
%time
# Create empty dictionary called fitted_models
fitted_models =
# Loop through model pipelines, tuning each one and saving it to fitted_models
for name, pipeline in pipelines.items():
# Create cross-validation object from pipeline and hyperparameters
model = GridSearchCV(pipeline, hyperparameters[name], cv=tscv, n_jobs=1,verbose=1)
# Fit model on X_train, y_train
model.fit(X_train, y_train)
# Store model in fitted_models[name]
fitted_models[name] = model
# Print 'name has been fitted'
print(name, 'has been fitted.')
FEAURE IMPORTANCE:-
pipelines['bow_MultinomialNB'].steps[2][1].classes__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-125-7d45b007e86b> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[2][1].classes_
AttributeError: 'MultinomialNB' object has no attribute 'classes_'
pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
<ipython-input-126-2883929221d1> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in get_feature_names(self)
958 def get_feature_names(self):
959 """Array mapping from feature integer indices to feature name"""
--> 960 self._check_vocabulary()
961
962 return [t for t, i in sorted(six.iteritems(self.vocabulary_),
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in _check_vocabulary(self)
301 """Check if vocabulary is empty or missing (not fit-ed)"""
302 msg = "%(name)s - Vocabulary wasn't fitted."
--> 303 check_is_fitted(self, 'vocabulary_', msg=msg),
304
305 if len(self.vocabulary_) == 0:
~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
766
767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 768 raise NotFittedError(msg % 'name': type(estimator).__name__)
769
770
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
x=pipelines['bow_MultinomialNB'].steps[0][1]._validate_vocabulary()
x.get_feature_names()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-120-f620c754a34e> in <module>()
----> 1 x.get_feature_names()
AttributeError: 'NoneType' object has no attribute 'get_feature_names'
Regards,
Shree
scikit-learn pipeline feature-extraction naivebayes
How to find Top features from Naive Bayes using sklearn pipeline
Hi all,
I am trying to apply Naive Bayes(MultinomialNB ) using pipelines and i came up with the code. However I am interested in finding top 10 positve and negative words , but not able to succeed. when I searched , I got the code for finding top features which i mentioned below. However when i tried using the code using pipeline i am getting the error which i mentioned below. I tried searching exhaustively , but got the code without using pipeline.But when i use the code with my output from pipeline, it is not working. COuld you please help me on how to find feature importance from pipeline output.
# Pipeline dictionary
pipelines =
'bow_MultinomialNB' : make_pipeline(
CountVectorizer(),
preprocessing.Normalizer(),
MultinomialNB()
)
# List tuneable hyperparameters of our pipeline
pipelines['bow_MultinomialNB'].get_params()
# BOW - MultinomialNB hyperparameters
bow_MultinomialNB_hyperparameters =
'multinomialnb__alpha' : [1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001]
# Create hyperparameters dictionary
hyperparameters =
'bow_MultinomialNB' : bow_MultinomialNB_hyperparameters
tscv = TimeSeriesSplit(n_splits=3) #For time based splitting
for name, pipeline in pipelines.items():
print("NAME:",name)
print("PIPELINE:",pipeline)
%time
# Create empty dictionary called fitted_models
fitted_models =
# Loop through model pipelines, tuning each one and saving it to fitted_models
for name, pipeline in pipelines.items():
# Create cross-validation object from pipeline and hyperparameters
model = GridSearchCV(pipeline, hyperparameters[name], cv=tscv, n_jobs=1,verbose=1)
# Fit model on X_train, y_train
model.fit(X_train, y_train)
# Store model in fitted_models[name]
fitted_models[name] = model
# Print 'name has been fitted'
print(name, 'has been fitted.')
FEAURE IMPORTANCE:-
pipelines['bow_MultinomialNB'].steps[2][1].classes__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-125-7d45b007e86b> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[2][1].classes_
AttributeError: 'MultinomialNB' object has no attribute 'classes_'
pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
---------------------------------------------------------------------------
NotFittedError Traceback (most recent call last)
<ipython-input-126-2883929221d1> in <module>()
----> 1 pipelines['bow_MultinomialNB'].steps[0][1].get_feature_names()
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in get_feature_names(self)
958 def get_feature_names(self):
959 """Array mapping from feature integer indices to feature name"""
--> 960 self._check_vocabulary()
961
962 return [t for t, i in sorted(six.iteritems(self.vocabulary_),
~Anaconda3libsite-packagessklearnfeature_extractiontext.py in _check_vocabulary(self)
301 """Check if vocabulary is empty or missing (not fit-ed)"""
302 msg = "%(name)s - Vocabulary wasn't fitted."
--> 303 check_is_fitted(self, 'vocabulary_', msg=msg),
304
305 if len(self.vocabulary_) == 0:
~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
766
767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 768 raise NotFittedError(msg % 'name': type(estimator).__name__)
769
770
NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
x=pipelines['bow_MultinomialNB'].steps[0][1]._validate_vocabulary()
x.get_feature_names()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-120-f620c754a34e> in <module>()
----> 1 x.get_feature_names()
AttributeError: 'NoneType' object has no attribute 'get_feature_names'
Regards,
Shree
scikit-learn pipeline feature-extraction naivebayes
scikit-learn pipeline feature-extraction naivebayes
edited Nov 12 '18 at 2:18
asked Nov 11 '18 at 20:17
premgnc1983
42
42
1
Is there a reason you're looking at thepipelines
object instead of the fitted model?
– Jarad
Nov 12 '18 at 3:38
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46
add a comment |
1
Is there a reason you're looking at thepipelines
object instead of the fitted model?
– Jarad
Nov 12 '18 at 3:38
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46
1
1
Is there a reason you're looking at the
pipelines
object instead of the fitted model?– Jarad
Nov 12 '18 at 3:38
Is there a reason you're looking at the
pipelines
object instead of the fitted model?– Jarad
Nov 12 '18 at 3:38
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252832%2fhow-to-find-top-features-from-naive-bayes-using-sklearn-pipeline%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252832%2fhow-to-find-top-features-from-naive-bayes-using-sklearn-pipeline%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Is there a reason you're looking at the
pipelines
object instead of the fitted model?– Jarad
Nov 12 '18 at 3:38
Either way it did not work. Actually I am saving each fitted model as per following code. fitted_models[name] = model. I am just interested in getting to work those error lines
– premgnc1983
Nov 12 '18 at 12:46