Sum of two infinite complex geometric sums
$begingroup$
let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
$endgroup$
add a comment |
$begingroup$
let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
$endgroup$
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21
add a comment |
$begingroup$
let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
$endgroup$
let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
sequences-and-series complex-numbers
edited Nov 15 '18 at 15:39
H.Linkhorn
asked Nov 15 '18 at 11:14
H.LinkhornH.Linkhorn
537313
537313
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21
add a comment |
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
HINT
We have that
$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
$endgroup$
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
add a comment |
$begingroup$
Hint:
Using Intuition behind euler's formula and the special case $e^ipi=-1$
$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT
We have that
$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
$endgroup$
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
add a comment |
$begingroup$
HINT
We have that
$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
$endgroup$
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
add a comment |
$begingroup$
HINT
We have that
$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
$endgroup$
HINT
We have that
$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
edited Nov 15 '18 at 11:28
answered Nov 15 '18 at 11:21
gimusigimusi
93k84594
93k84594
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
add a comment |
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
$endgroup$
– H.Linkhorn
Nov 17 '18 at 18:31
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
$begingroup$
@H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
$endgroup$
– gimusi
Nov 17 '18 at 21:36
add a comment |
$begingroup$
Hint:
Using Intuition behind euler's formula and the special case $e^ipi=-1$
$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$
$endgroup$
add a comment |
$begingroup$
Hint:
Using Intuition behind euler's formula and the special case $e^ipi=-1$
$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$
$endgroup$
add a comment |
$begingroup$
Hint:
Using Intuition behind euler's formula and the special case $e^ipi=-1$
$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$
$endgroup$
Hint:
Using Intuition behind euler's formula and the special case $e^ipi=-1$
$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$
answered Nov 15 '18 at 11:21
lab bhattacharjeelab bhattacharjee
229k15159279
229k15159279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21