Sum of two infinite complex geometric sums










4












$begingroup$



let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
    $endgroup$
    – Yadati Kiran
    Nov 15 '18 at 11:21
















4












$begingroup$



let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
    $endgroup$
    – Yadati Kiran
    Nov 15 '18 at 11:21














4












4








4





$begingroup$



let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question











$endgroup$





let $$C=fraccostheta2-fraccos2theta4+fraccos3theta8+...$$
$$S=fracsintheta2-fracsin2theta4+fracsin3theta8+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(fraccostheta2-fraccos2theta4+fraccos3theta8+...)+i(fracsintheta2-fracsin2theta4+fracsin3theta8+...)$$
$$=frac12(costheta+isintheta)-frac14(cos2theta+isin2theta)+frac18(cos3theta+isin3theta) + ...$$
$$=frac12(costheta+isintheta)-frac14(costheta+isintheta)^2+frac18(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac12[e^itheta-frac12(e^itheta)^2+frac14(e^itheta)^3...]$$ But I'm still not sure where to continue.







sequences-and-series complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 15 '18 at 15:39







H.Linkhorn

















asked Nov 15 '18 at 11:14









H.LinkhornH.Linkhorn

537313




537313











  • $begingroup$
    Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
    $endgroup$
    – Yadati Kiran
    Nov 15 '18 at 11:21

















  • $begingroup$
    Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
    $endgroup$
    – Yadati Kiran
    Nov 15 '18 at 11:21
















$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21





$begingroup$
Use $costheta+isintheta=e^itheta$ and factor out $frac12$.
$endgroup$
– Yadati Kiran
Nov 15 '18 at 11:21











2 Answers
2






active

oldest

votes


















2












$begingroup$

HINT



We have that



$$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
=-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$



then refer to geometric series which holds also for $r$ complex $|r|<1$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
    $endgroup$
    – H.Linkhorn
    Nov 17 '18 at 18:31











  • $begingroup$
    @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
    $endgroup$
    – gimusi
    Nov 17 '18 at 21:36



















3












$begingroup$

Hint:



Using Intuition behind euler's formula and the special case $e^ipi=-1$



$$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$



Now for the common ratio$(r)$ of Geometric Series,



$|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    HINT



    We have that



    $$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
    =-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$



    then refer to geometric series which holds also for $r$ complex $|r|<1$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
      $endgroup$
      – H.Linkhorn
      Nov 17 '18 at 18:31











    • $begingroup$
      @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
      $endgroup$
      – gimusi
      Nov 17 '18 at 21:36
















    2












    $begingroup$

    HINT



    We have that



    $$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
    =-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$



    then refer to geometric series which holds also for $r$ complex $|r|<1$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
      $endgroup$
      – H.Linkhorn
      Nov 17 '18 at 18:31











    • $begingroup$
      @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
      $endgroup$
      – gimusi
      Nov 17 '18 at 21:36














    2












    2








    2





    $begingroup$

    HINT



    We have that



    $$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
    =-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$



    then refer to geometric series which holds also for $r$ complex $|r|<1$.






    share|cite|improve this answer











    $endgroup$



    HINT



    We have that



    $$C+iS=sum_k=1^inftyfrac(-1)^k+12^ke^left(ikthetaright)
    =-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k$$



    then refer to geometric series which holds also for $r$ complex $|r|<1$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Nov 15 '18 at 11:28

























    answered Nov 15 '18 at 11:21









    gimusigimusi

    93k84594




    93k84594











    • $begingroup$
      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
      $endgroup$
      – H.Linkhorn
      Nov 17 '18 at 18:31











    • $begingroup$
      @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
      $endgroup$
      – gimusi
      Nov 17 '18 at 21:36

















    • $begingroup$
      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
      $endgroup$
      – H.Linkhorn
      Nov 17 '18 at 18:31











    • $begingroup$
      @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
      $endgroup$
      – gimusi
      Nov 17 '18 at 21:36
















    $begingroup$
    I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
    $endgroup$
    – H.Linkhorn
    Nov 17 '18 at 18:31





    $begingroup$
    I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $fracexp(itheta)+1exp(itheta)+2exp(-itheta)+3 $which isn't the correct answer. I was told i should be $frac2exp(itheta)+15+4costheta$
    $endgroup$
    – H.Linkhorn
    Nov 17 '18 at 18:31













    $begingroup$
    @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
    $endgroup$
    – gimusi
    Nov 17 '18 at 21:36





    $begingroup$
    @H.Linkhorn We have that $$-sum_k=1^inftyleft(-frace^left(ithetaright)2right)^k=-frac11+frace^itheta2+1=frace^itheta2+e^itheta$$ Then multiply by $2+e^-itheta$ denominator and numerator to obtain teh result.
    $endgroup$
    – gimusi
    Nov 17 '18 at 21:36












    3












    $begingroup$

    Hint:



    Using Intuition behind euler's formula and the special case $e^ipi=-1$



    $$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$



    Now for the common ratio$(r)$ of Geometric Series,



    $|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      Hint:



      Using Intuition behind euler's formula and the special case $e^ipi=-1$



      $$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$



      Now for the common ratio$(r)$ of Geometric Series,



      $|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Hint:



        Using Intuition behind euler's formula and the special case $e^ipi=-1$



        $$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$



        Now for the common ratio$(r)$ of Geometric Series,



        $|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$






        share|cite|improve this answer









        $endgroup$



        Hint:



        Using Intuition behind euler's formula and the special case $e^ipi=-1$



        $$dfrac(cos t+isin t)^n(-1)^n-12^n=-dfrace^int(e^ipi)^n2^n=-left(dfrace^i(t+pi)2right)^n$$



        Now for the common ratio$(r)$ of Geometric Series,



        $|r|=left|dfrace^i(t+pi)2right|=dfrac12<1$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 15 '18 at 11:21









        lab bhattacharjeelab bhattacharjee

        229k15159279




        229k15159279



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Use pre created SQLite database for Android project in kotlin

            Darth Vader #20

            Ondo