AWS SageMaker pd.read_pickle() doesn't work but read_csv() does?
I've recently been trying to train some models on an AWS SageMaker jupyter notebook instance.
Everything is worked very well until I tried to load in some custom dataset (REDD) through files.
I have the dataframes stored in Pickle (.pkl) files on an S3 bucket. I couldn't manage to read them into sagemaker so I decided to convert them to csv's as this seemed to work but I ran into a problem. This data has an index of type datetime64 and when using .to_csv()
this index gets converted to pure text and it loses it's data structure (and I need to keep this specific index for correct plotting.)
So I decided to try the Pickle files again but I can't get it to work and have no idea why.
The following code for csv's works but I can't use it due to the index problem:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_csv(data_location+'house_'+str(file+1)+'.csv', index_col='Unnamed: 0')
But this code does NOT work even though it uses almost the exact same syntax:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_pickle(data_location+'house_'+str(file+1)+'.pkl')
Yes it's 100% the correct path, because the csv and pkl files are stored in the same directory (compressed_data).
It throws me this error while using the Pickle method:
FileNotFoundError: [Errno 2] No such file or directory: 's3://sagemaker-peno/compressed_data/house_1.pkl'
I hope to find someone who has dealt with this before and can solve the read_pickle()
issue or as an alternative fix my datetime64 type issue with csv's.
Thanks in advance!
pandas csv amazon-s3 pickle aws-sagemaker
add a comment |
I've recently been trying to train some models on an AWS SageMaker jupyter notebook instance.
Everything is worked very well until I tried to load in some custom dataset (REDD) through files.
I have the dataframes stored in Pickle (.pkl) files on an S3 bucket. I couldn't manage to read them into sagemaker so I decided to convert them to csv's as this seemed to work but I ran into a problem. This data has an index of type datetime64 and when using .to_csv()
this index gets converted to pure text and it loses it's data structure (and I need to keep this specific index for correct plotting.)
So I decided to try the Pickle files again but I can't get it to work and have no idea why.
The following code for csv's works but I can't use it due to the index problem:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_csv(data_location+'house_'+str(file+1)+'.csv', index_col='Unnamed: 0')
But this code does NOT work even though it uses almost the exact same syntax:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_pickle(data_location+'house_'+str(file+1)+'.pkl')
Yes it's 100% the correct path, because the csv and pkl files are stored in the same directory (compressed_data).
It throws me this error while using the Pickle method:
FileNotFoundError: [Errno 2] No such file or directory: 's3://sagemaker-peno/compressed_data/house_1.pkl'
I hope to find someone who has dealt with this before and can solve the read_pickle()
issue or as an alternative fix my datetime64 type issue with csv's.
Thanks in advance!
pandas csv amazon-s3 pickle aws-sagemaker
add a comment |
I've recently been trying to train some models on an AWS SageMaker jupyter notebook instance.
Everything is worked very well until I tried to load in some custom dataset (REDD) through files.
I have the dataframes stored in Pickle (.pkl) files on an S3 bucket. I couldn't manage to read them into sagemaker so I decided to convert them to csv's as this seemed to work but I ran into a problem. This data has an index of type datetime64 and when using .to_csv()
this index gets converted to pure text and it loses it's data structure (and I need to keep this specific index for correct plotting.)
So I decided to try the Pickle files again but I can't get it to work and have no idea why.
The following code for csv's works but I can't use it due to the index problem:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_csv(data_location+'house_'+str(file+1)+'.csv', index_col='Unnamed: 0')
But this code does NOT work even though it uses almost the exact same syntax:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_pickle(data_location+'house_'+str(file+1)+'.pkl')
Yes it's 100% the correct path, because the csv and pkl files are stored in the same directory (compressed_data).
It throws me this error while using the Pickle method:
FileNotFoundError: [Errno 2] No such file or directory: 's3://sagemaker-peno/compressed_data/house_1.pkl'
I hope to find someone who has dealt with this before and can solve the read_pickle()
issue or as an alternative fix my datetime64 type issue with csv's.
Thanks in advance!
pandas csv amazon-s3 pickle aws-sagemaker
I've recently been trying to train some models on an AWS SageMaker jupyter notebook instance.
Everything is worked very well until I tried to load in some custom dataset (REDD) through files.
I have the dataframes stored in Pickle (.pkl) files on an S3 bucket. I couldn't manage to read them into sagemaker so I decided to convert them to csv's as this seemed to work but I ran into a problem. This data has an index of type datetime64 and when using .to_csv()
this index gets converted to pure text and it loses it's data structure (and I need to keep this specific index for correct plotting.)
So I decided to try the Pickle files again but I can't get it to work and have no idea why.
The following code for csv's works but I can't use it due to the index problem:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_csv(data_location+'house_'+str(file+1)+'.csv', index_col='Unnamed: 0')
But this code does NOT work even though it uses almost the exact same syntax:
bucket = 'sagemaker-peno'
houses_dfs =
data_key = 'compressed_data/'
data_location = 's3:///'.format(bucket, data_key)
for file in range(6):
houses_dfs[file+1] = pd.read_pickle(data_location+'house_'+str(file+1)+'.pkl')
Yes it's 100% the correct path, because the csv and pkl files are stored in the same directory (compressed_data).
It throws me this error while using the Pickle method:
FileNotFoundError: [Errno 2] No such file or directory: 's3://sagemaker-peno/compressed_data/house_1.pkl'
I hope to find someone who has dealt with this before and can solve the read_pickle()
issue or as an alternative fix my datetime64 type issue with csv's.
Thanks in advance!
pandas csv amazon-s3 pickle aws-sagemaker
pandas csv amazon-s3 pickle aws-sagemaker
asked Nov 13 '18 at 12:20
Dirkx SenneDirkx Senne
5810
5810
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
read_pickle() likes the full path more than a relative path from where it was run. This fixed my issue.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280902%2faws-sagemaker-pd-read-pickle-doesnt-work-but-read-csv-does%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
read_pickle() likes the full path more than a relative path from where it was run. This fixed my issue.
add a comment |
read_pickle() likes the full path more than a relative path from where it was run. This fixed my issue.
add a comment |
read_pickle() likes the full path more than a relative path from where it was run. This fixed my issue.
read_pickle() likes the full path more than a relative path from where it was run. This fixed my issue.
answered Nov 26 '18 at 20:32
Dirkx SenneDirkx Senne
5810
5810
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280902%2faws-sagemaker-pd-read-pickle-doesnt-work-but-read-csv-does%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown