Exploding Array in Batches of size 'n'










0















Looking to explode a nested array w/ Spark into batches. The column below is a nested array from an XML files. Now attempting to write the time series data into batches in order to write over to a NoSQL database. For example:



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4],[5,6]] |
+-------+-----------------------+


Output with batches of size 2



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4]] |
+-------+-----------------------+
| A| [[5,6]] |
+-------+-----------------------+









share|improve this question



















  • 3





    can you share the schema of your input dataframe and if possible of the expected dataframe?

    – Ramesh Maharjan
    May 16 '18 at 3:09















0















Looking to explode a nested array w/ Spark into batches. The column below is a nested array from an XML files. Now attempting to write the time series data into batches in order to write over to a NoSQL database. For example:



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4],[5,6]] |
+-------+-----------------------+


Output with batches of size 2



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4]] |
+-------+-----------------------+
| A| [[5,6]] |
+-------+-----------------------+









share|improve this question



















  • 3





    can you share the schema of your input dataframe and if possible of the expected dataframe?

    – Ramesh Maharjan
    May 16 '18 at 3:09













0












0








0


1






Looking to explode a nested array w/ Spark into batches. The column below is a nested array from an XML files. Now attempting to write the time series data into batches in order to write over to a NoSQL database. For example:



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4],[5,6]] |
+-------+-----------------------+


Output with batches of size 2



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4]] |
+-------+-----------------------+
| A| [[5,6]] |
+-------+-----------------------+









share|improve this question
















Looking to explode a nested array w/ Spark into batches. The column below is a nested array from an XML files. Now attempting to write the time series data into batches in order to write over to a NoSQL database. For example:



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4],[5,6]] |
+-------+-----------------------+


Output with batches of size 2



+-------+-----------------------+
| ID | Example |
+-------+-----------------------+
| A| [[1,2],[3,4]] |
+-------+-----------------------+
| A| [[5,6]] |
+-------+-----------------------+






apache-spark pyspark






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 15 '18 at 21:18







Trace Smith

















asked May 15 '18 at 21:11









Trace SmithTrace Smith

3514




3514







  • 3





    can you share the schema of your input dataframe and if possible of the expected dataframe?

    – Ramesh Maharjan
    May 16 '18 at 3:09












  • 3





    can you share the schema of your input dataframe and if possible of the expected dataframe?

    – Ramesh Maharjan
    May 16 '18 at 3:09







3




3





can you share the schema of your input dataframe and if possible of the expected dataframe?

– Ramesh Maharjan
May 16 '18 at 3:09





can you share the schema of your input dataframe and if possible of the expected dataframe?

– Ramesh Maharjan
May 16 '18 at 3:09












1 Answer
1






active

oldest

votes


















1
















For Spark v 2.1+



You can take advantage of pyspark.sql.functions.posexplode() to explode your column along with the index it appears in your array and then divide the resultant position by n to create groups.



For example, here is the output of using posexplode() on your DataFrame:



import pyspark.sql.functions as f
df.select('ID', f.posexplode('Example')).show()
#+---+---+------+
#| ID|pos| col|
#+---+---+------+
#| A| 0|[1, 2]|
#| A| 1|[3, 4]|
#| A| 2|[5, 6]|
#+---+---+------+


Notice that we get two columns: pos and col instead of just one. Since we want groups of n, we can simply divide the pos by n and take the floor to get groups.



n = 2
df.select('ID', f.posexplode('Example'))
.withColumn("group", f.floor(f.col("pos")/n))
.show(truncate=False)
#+---+---+------+-----+
#|ID |pos|col |group|
#+---+---+------+-----+
#|A |0 |[1, 2]|0 |
#|A |1 |[3, 4]|0 |
#|A |2 |[5, 6]|1 |
#+---+---+------+-----+


Now group by the "ID" and the "group" and use pyspark.sql.functions.collect_list() to get your desired output.



df.select('ID', f.posexplode('Example'))
.withColumn("group", f.floor(f.col("pos")/n))
.groupBy("ID", "group")
.agg(f.collect_list("col").alias("Example"))
.sort("group")
.drop("group")
.show(truncate=False)
#+---+----------------------------------------+
#|ID |Example |
#+---+----------------------------------------+
#|A |[WrappedArray(1, 2), WrappedArray(3, 4)]|
#|A |[WrappedArray(5, 6)] |
#+---+----------------------------------------+


You'll see that I also sorted by the "group" column and dropped it, but this is optional depending on your needs.




For Older Versions of Spark



There are some other methods for Spark versions below 2.1. All of these methods produce the same output as above.



1. Using udf



You can use a udf to break your array into groups. For example:



def get_groups(array, n):
return filter(lambda x: x, [array[i*n:(i+1)*n] for i in range(len(array))])

get_groups_of_2 = f.udf(
lambda x: get_groups(x, 2),
ArrayType(ArrayType(ArrayType(IntegerType())))
)

df.select("ID", f.explode(get_groups_of_2("Example")).alias("Example"))
.show(truncate=False)


The get_groups() function will take an array and return an array of groups of n elements.



2. Using rdd



Another option is to serialize to rdd and use the get_groups() function inside of a call to map(). Then convert back to a DataFrame. You'll have to specify the schema for this conversion to work properly.



n = 2

schema = StructType(
[
StructField("ID", StringType()),
StructField("Example", ArrayType(ArrayType(ArrayType(IntegerType()))))
]
)

df.rdd.map(lambda x: (x["ID"], get_groups(x["Example"], n=n)))
.toDF(schema)
.select("ID", f.explode("Example").alias("Example"))
.show(truncate=False)





share|improve this answer
























    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f50359239%2fexploding-array-in-batches-of-size-n%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1
















    For Spark v 2.1+



    You can take advantage of pyspark.sql.functions.posexplode() to explode your column along with the index it appears in your array and then divide the resultant position by n to create groups.



    For example, here is the output of using posexplode() on your DataFrame:



    import pyspark.sql.functions as f
    df.select('ID', f.posexplode('Example')).show()
    #+---+---+------+
    #| ID|pos| col|
    #+---+---+------+
    #| A| 0|[1, 2]|
    #| A| 1|[3, 4]|
    #| A| 2|[5, 6]|
    #+---+---+------+


    Notice that we get two columns: pos and col instead of just one. Since we want groups of n, we can simply divide the pos by n and take the floor to get groups.



    n = 2
    df.select('ID', f.posexplode('Example'))
    .withColumn("group", f.floor(f.col("pos")/n))
    .show(truncate=False)
    #+---+---+------+-----+
    #|ID |pos|col |group|
    #+---+---+------+-----+
    #|A |0 |[1, 2]|0 |
    #|A |1 |[3, 4]|0 |
    #|A |2 |[5, 6]|1 |
    #+---+---+------+-----+


    Now group by the "ID" and the "group" and use pyspark.sql.functions.collect_list() to get your desired output.



    df.select('ID', f.posexplode('Example'))
    .withColumn("group", f.floor(f.col("pos")/n))
    .groupBy("ID", "group")
    .agg(f.collect_list("col").alias("Example"))
    .sort("group")
    .drop("group")
    .show(truncate=False)
    #+---+----------------------------------------+
    #|ID |Example |
    #+---+----------------------------------------+
    #|A |[WrappedArray(1, 2), WrappedArray(3, 4)]|
    #|A |[WrappedArray(5, 6)] |
    #+---+----------------------------------------+


    You'll see that I also sorted by the "group" column and dropped it, but this is optional depending on your needs.




    For Older Versions of Spark



    There are some other methods for Spark versions below 2.1. All of these methods produce the same output as above.



    1. Using udf



    You can use a udf to break your array into groups. For example:



    def get_groups(array, n):
    return filter(lambda x: x, [array[i*n:(i+1)*n] for i in range(len(array))])

    get_groups_of_2 = f.udf(
    lambda x: get_groups(x, 2),
    ArrayType(ArrayType(ArrayType(IntegerType())))
    )

    df.select("ID", f.explode(get_groups_of_2("Example")).alias("Example"))
    .show(truncate=False)


    The get_groups() function will take an array and return an array of groups of n elements.



    2. Using rdd



    Another option is to serialize to rdd and use the get_groups() function inside of a call to map(). Then convert back to a DataFrame. You'll have to specify the schema for this conversion to work properly.



    n = 2

    schema = StructType(
    [
    StructField("ID", StringType()),
    StructField("Example", ArrayType(ArrayType(ArrayType(IntegerType()))))
    ]
    )

    df.rdd.map(lambda x: (x["ID"], get_groups(x["Example"], n=n)))
    .toDF(schema)
    .select("ID", f.explode("Example").alias("Example"))
    .show(truncate=False)





    share|improve this answer





























      1
















      For Spark v 2.1+



      You can take advantage of pyspark.sql.functions.posexplode() to explode your column along with the index it appears in your array and then divide the resultant position by n to create groups.



      For example, here is the output of using posexplode() on your DataFrame:



      import pyspark.sql.functions as f
      df.select('ID', f.posexplode('Example')).show()
      #+---+---+------+
      #| ID|pos| col|
      #+---+---+------+
      #| A| 0|[1, 2]|
      #| A| 1|[3, 4]|
      #| A| 2|[5, 6]|
      #+---+---+------+


      Notice that we get two columns: pos and col instead of just one. Since we want groups of n, we can simply divide the pos by n and take the floor to get groups.



      n = 2
      df.select('ID', f.posexplode('Example'))
      .withColumn("group", f.floor(f.col("pos")/n))
      .show(truncate=False)
      #+---+---+------+-----+
      #|ID |pos|col |group|
      #+---+---+------+-----+
      #|A |0 |[1, 2]|0 |
      #|A |1 |[3, 4]|0 |
      #|A |2 |[5, 6]|1 |
      #+---+---+------+-----+


      Now group by the "ID" and the "group" and use pyspark.sql.functions.collect_list() to get your desired output.



      df.select('ID', f.posexplode('Example'))
      .withColumn("group", f.floor(f.col("pos")/n))
      .groupBy("ID", "group")
      .agg(f.collect_list("col").alias("Example"))
      .sort("group")
      .drop("group")
      .show(truncate=False)
      #+---+----------------------------------------+
      #|ID |Example |
      #+---+----------------------------------------+
      #|A |[WrappedArray(1, 2), WrappedArray(3, 4)]|
      #|A |[WrappedArray(5, 6)] |
      #+---+----------------------------------------+


      You'll see that I also sorted by the "group" column and dropped it, but this is optional depending on your needs.




      For Older Versions of Spark



      There are some other methods for Spark versions below 2.1. All of these methods produce the same output as above.



      1. Using udf



      You can use a udf to break your array into groups. For example:



      def get_groups(array, n):
      return filter(lambda x: x, [array[i*n:(i+1)*n] for i in range(len(array))])

      get_groups_of_2 = f.udf(
      lambda x: get_groups(x, 2),
      ArrayType(ArrayType(ArrayType(IntegerType())))
      )

      df.select("ID", f.explode(get_groups_of_2("Example")).alias("Example"))
      .show(truncate=False)


      The get_groups() function will take an array and return an array of groups of n elements.



      2. Using rdd



      Another option is to serialize to rdd and use the get_groups() function inside of a call to map(). Then convert back to a DataFrame. You'll have to specify the schema for this conversion to work properly.



      n = 2

      schema = StructType(
      [
      StructField("ID", StringType()),
      StructField("Example", ArrayType(ArrayType(ArrayType(IntegerType()))))
      ]
      )

      df.rdd.map(lambda x: (x["ID"], get_groups(x["Example"], n=n)))
      .toDF(schema)
      .select("ID", f.explode("Example").alias("Example"))
      .show(truncate=False)





      share|improve this answer



























        1












        1








        1









        For Spark v 2.1+



        You can take advantage of pyspark.sql.functions.posexplode() to explode your column along with the index it appears in your array and then divide the resultant position by n to create groups.



        For example, here is the output of using posexplode() on your DataFrame:



        import pyspark.sql.functions as f
        df.select('ID', f.posexplode('Example')).show()
        #+---+---+------+
        #| ID|pos| col|
        #+---+---+------+
        #| A| 0|[1, 2]|
        #| A| 1|[3, 4]|
        #| A| 2|[5, 6]|
        #+---+---+------+


        Notice that we get two columns: pos and col instead of just one. Since we want groups of n, we can simply divide the pos by n and take the floor to get groups.



        n = 2
        df.select('ID', f.posexplode('Example'))
        .withColumn("group", f.floor(f.col("pos")/n))
        .show(truncate=False)
        #+---+---+------+-----+
        #|ID |pos|col |group|
        #+---+---+------+-----+
        #|A |0 |[1, 2]|0 |
        #|A |1 |[3, 4]|0 |
        #|A |2 |[5, 6]|1 |
        #+---+---+------+-----+


        Now group by the "ID" and the "group" and use pyspark.sql.functions.collect_list() to get your desired output.



        df.select('ID', f.posexplode('Example'))
        .withColumn("group", f.floor(f.col("pos")/n))
        .groupBy("ID", "group")
        .agg(f.collect_list("col").alias("Example"))
        .sort("group")
        .drop("group")
        .show(truncate=False)
        #+---+----------------------------------------+
        #|ID |Example |
        #+---+----------------------------------------+
        #|A |[WrappedArray(1, 2), WrappedArray(3, 4)]|
        #|A |[WrappedArray(5, 6)] |
        #+---+----------------------------------------+


        You'll see that I also sorted by the "group" column and dropped it, but this is optional depending on your needs.




        For Older Versions of Spark



        There are some other methods for Spark versions below 2.1. All of these methods produce the same output as above.



        1. Using udf



        You can use a udf to break your array into groups. For example:



        def get_groups(array, n):
        return filter(lambda x: x, [array[i*n:(i+1)*n] for i in range(len(array))])

        get_groups_of_2 = f.udf(
        lambda x: get_groups(x, 2),
        ArrayType(ArrayType(ArrayType(IntegerType())))
        )

        df.select("ID", f.explode(get_groups_of_2("Example")).alias("Example"))
        .show(truncate=False)


        The get_groups() function will take an array and return an array of groups of n elements.



        2. Using rdd



        Another option is to serialize to rdd and use the get_groups() function inside of a call to map(). Then convert back to a DataFrame. You'll have to specify the schema for this conversion to work properly.



        n = 2

        schema = StructType(
        [
        StructField("ID", StringType()),
        StructField("Example", ArrayType(ArrayType(ArrayType(IntegerType()))))
        ]
        )

        df.rdd.map(lambda x: (x["ID"], get_groups(x["Example"], n=n)))
        .toDF(schema)
        .select("ID", f.explode("Example").alias("Example"))
        .show(truncate=False)





        share|improve this answer

















        For Spark v 2.1+



        You can take advantage of pyspark.sql.functions.posexplode() to explode your column along with the index it appears in your array and then divide the resultant position by n to create groups.



        For example, here is the output of using posexplode() on your DataFrame:



        import pyspark.sql.functions as f
        df.select('ID', f.posexplode('Example')).show()
        #+---+---+------+
        #| ID|pos| col|
        #+---+---+------+
        #| A| 0|[1, 2]|
        #| A| 1|[3, 4]|
        #| A| 2|[5, 6]|
        #+---+---+------+


        Notice that we get two columns: pos and col instead of just one. Since we want groups of n, we can simply divide the pos by n and take the floor to get groups.



        n = 2
        df.select('ID', f.posexplode('Example'))
        .withColumn("group", f.floor(f.col("pos")/n))
        .show(truncate=False)
        #+---+---+------+-----+
        #|ID |pos|col |group|
        #+---+---+------+-----+
        #|A |0 |[1, 2]|0 |
        #|A |1 |[3, 4]|0 |
        #|A |2 |[5, 6]|1 |
        #+---+---+------+-----+


        Now group by the "ID" and the "group" and use pyspark.sql.functions.collect_list() to get your desired output.



        df.select('ID', f.posexplode('Example'))
        .withColumn("group", f.floor(f.col("pos")/n))
        .groupBy("ID", "group")
        .agg(f.collect_list("col").alias("Example"))
        .sort("group")
        .drop("group")
        .show(truncate=False)
        #+---+----------------------------------------+
        #|ID |Example |
        #+---+----------------------------------------+
        #|A |[WrappedArray(1, 2), WrappedArray(3, 4)]|
        #|A |[WrappedArray(5, 6)] |
        #+---+----------------------------------------+


        You'll see that I also sorted by the "group" column and dropped it, but this is optional depending on your needs.




        For Older Versions of Spark



        There are some other methods for Spark versions below 2.1. All of these methods produce the same output as above.



        1. Using udf



        You can use a udf to break your array into groups. For example:



        def get_groups(array, n):
        return filter(lambda x: x, [array[i*n:(i+1)*n] for i in range(len(array))])

        get_groups_of_2 = f.udf(
        lambda x: get_groups(x, 2),
        ArrayType(ArrayType(ArrayType(IntegerType())))
        )

        df.select("ID", f.explode(get_groups_of_2("Example")).alias("Example"))
        .show(truncate=False)


        The get_groups() function will take an array and return an array of groups of n elements.



        2. Using rdd



        Another option is to serialize to rdd and use the get_groups() function inside of a call to map(). Then convert back to a DataFrame. You'll have to specify the schema for this conversion to work properly.



        n = 2

        schema = StructType(
        [
        StructField("ID", StringType()),
        StructField("Example", ArrayType(ArrayType(ArrayType(IntegerType()))))
        ]
        )

        df.rdd.map(lambda x: (x["ID"], get_groups(x["Example"], n=n)))
        .toDF(schema)
        .select("ID", f.explode("Example").alias("Example"))
        .show(truncate=False)






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited May 21 '18 at 16:17

























        answered May 21 '18 at 15:51









        paultpault

        16.1k32552




        16.1k32552





























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f50359239%2fexploding-array-in-batches-of-size-n%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Use pre created SQLite database for Android project in kotlin

            Darth Vader #20

            Ondo