How to get a DataFrame from the DataFrame with one column as a sum of values of other rows?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I have a DataFrame in this way:
shop_id item_price item_cnt_day day month year
59 9.00 1.0 02 01 2013
59 8.00 2.0 02 01 2013
25 10.00 4.0 05 02 2013
25 17.0 1.0 06 01 2013
25 10.00 1.0 15 01 2013
And I try to get the result like following DataFrame:
shop_id all_revenue month year
59 25.00 01 2013
25 27.00 01 2013
I mean I want to get each shop's revenue in January 2013.
BUT, I don't know how to code in Pandas. Any help would be appreciated.
python pandas
add a comment |
I have a DataFrame in this way:
shop_id item_price item_cnt_day day month year
59 9.00 1.0 02 01 2013
59 8.00 2.0 02 01 2013
25 10.00 4.0 05 02 2013
25 17.0 1.0 06 01 2013
25 10.00 1.0 15 01 2013
And I try to get the result like following DataFrame:
shop_id all_revenue month year
59 25.00 01 2013
25 27.00 01 2013
I mean I want to get each shop's revenue in January 2013.
BUT, I don't know how to code in Pandas. Any help would be appreciated.
python pandas
add a comment |
I have a DataFrame in this way:
shop_id item_price item_cnt_day day month year
59 9.00 1.0 02 01 2013
59 8.00 2.0 02 01 2013
25 10.00 4.0 05 02 2013
25 17.0 1.0 06 01 2013
25 10.00 1.0 15 01 2013
And I try to get the result like following DataFrame:
shop_id all_revenue month year
59 25.00 01 2013
25 27.00 01 2013
I mean I want to get each shop's revenue in January 2013.
BUT, I don't know how to code in Pandas. Any help would be appreciated.
python pandas
I have a DataFrame in this way:
shop_id item_price item_cnt_day day month year
59 9.00 1.0 02 01 2013
59 8.00 2.0 02 01 2013
25 10.00 4.0 05 02 2013
25 17.0 1.0 06 01 2013
25 10.00 1.0 15 01 2013
And I try to get the result like following DataFrame:
shop_id all_revenue month year
59 25.00 01 2013
25 27.00 01 2013
I mean I want to get each shop's revenue in January 2013.
BUT, I don't know how to code in Pandas. Any help would be appreciated.
python pandas
python pandas
asked Nov 15 '18 at 14:17
FreAk PointFreAk Point
798
798
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
eval
+ groupby
+ sum
You can assign a series via eval
, then use groupby
:
res = df.eval('revenue=item_price * item_cnt_day')
.groupby(['shop_id', 'month', 'year'], as_index=False)['revenue'].sum()
You can, if you wish, query
for January 2013 (before or after the above operations):
res = res.query('month == 1 & year == 2013')
print(res)
shop_id month year revenue
0 25 1 2013 27.0
2 59 1 2013 25.0
add a comment |
I like filtering the dataframe first, to reduce number of unnecessary calculations:
df.query('month == 1 and year == 2013')
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
Output:
shop_id month year all_revenue
0 25 1 2013 27.0
1 59 1 2013 25.0
Note: Because your column names are "friendly", no spaces nor special characters, you can use query
method. If that doesn't work for your column naming then you need to use boolean indexing.
df[(df['month'] == 1) & (df['year'] == 2013)]
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53321441%2fhow-to-get-a-dataframe-from-the-dataframe-with-one-column-as-a-sum-of-values-of%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
eval
+ groupby
+ sum
You can assign a series via eval
, then use groupby
:
res = df.eval('revenue=item_price * item_cnt_day')
.groupby(['shop_id', 'month', 'year'], as_index=False)['revenue'].sum()
You can, if you wish, query
for January 2013 (before or after the above operations):
res = res.query('month == 1 & year == 2013')
print(res)
shop_id month year revenue
0 25 1 2013 27.0
2 59 1 2013 25.0
add a comment |
eval
+ groupby
+ sum
You can assign a series via eval
, then use groupby
:
res = df.eval('revenue=item_price * item_cnt_day')
.groupby(['shop_id', 'month', 'year'], as_index=False)['revenue'].sum()
You can, if you wish, query
for January 2013 (before or after the above operations):
res = res.query('month == 1 & year == 2013')
print(res)
shop_id month year revenue
0 25 1 2013 27.0
2 59 1 2013 25.0
add a comment |
eval
+ groupby
+ sum
You can assign a series via eval
, then use groupby
:
res = df.eval('revenue=item_price * item_cnt_day')
.groupby(['shop_id', 'month', 'year'], as_index=False)['revenue'].sum()
You can, if you wish, query
for January 2013 (before or after the above operations):
res = res.query('month == 1 & year == 2013')
print(res)
shop_id month year revenue
0 25 1 2013 27.0
2 59 1 2013 25.0
eval
+ groupby
+ sum
You can assign a series via eval
, then use groupby
:
res = df.eval('revenue=item_price * item_cnt_day')
.groupby(['shop_id', 'month', 'year'], as_index=False)['revenue'].sum()
You can, if you wish, query
for January 2013 (before or after the above operations):
res = res.query('month == 1 & year == 2013')
print(res)
shop_id month year revenue
0 25 1 2013 27.0
2 59 1 2013 25.0
edited Nov 15 '18 at 15:07
answered Nov 15 '18 at 14:22
jppjpp
103k2167117
103k2167117
add a comment |
add a comment |
I like filtering the dataframe first, to reduce number of unnecessary calculations:
df.query('month == 1 and year == 2013')
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
Output:
shop_id month year all_revenue
0 25 1 2013 27.0
1 59 1 2013 25.0
Note: Because your column names are "friendly", no spaces nor special characters, you can use query
method. If that doesn't work for your column naming then you need to use boolean indexing.
df[(df['month'] == 1) & (df['year'] == 2013)]
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
add a comment |
I like filtering the dataframe first, to reduce number of unnecessary calculations:
df.query('month == 1 and year == 2013')
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
Output:
shop_id month year all_revenue
0 25 1 2013 27.0
1 59 1 2013 25.0
Note: Because your column names are "friendly", no spaces nor special characters, you can use query
method. If that doesn't work for your column naming then you need to use boolean indexing.
df[(df['month'] == 1) & (df['year'] == 2013)]
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
add a comment |
I like filtering the dataframe first, to reduce number of unnecessary calculations:
df.query('month == 1 and year == 2013')
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
Output:
shop_id month year all_revenue
0 25 1 2013 27.0
1 59 1 2013 25.0
Note: Because your column names are "friendly", no spaces nor special characters, you can use query
method. If that doesn't work for your column naming then you need to use boolean indexing.
df[(df['month'] == 1) & (df['year'] == 2013)]
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
I like filtering the dataframe first, to reduce number of unnecessary calculations:
df.query('month == 1 and year == 2013')
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
Output:
shop_id month year all_revenue
0 25 1 2013 27.0
1 59 1 2013 25.0
Note: Because your column names are "friendly", no spaces nor special characters, you can use query
method. If that doesn't work for your column naming then you need to use boolean indexing.
df[(df['month'] == 1) & (df['year'] == 2013)]
.assign(all_revenue = df.item_price * df.item_cnt_day)
.groupby(['shop_id','month','year'], as_index=False)['all_revenue'].sum()
answered Nov 15 '18 at 14:38
Scott BostonScott Boston
58.7k73258
58.7k73258
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53321441%2fhow-to-get-a-dataframe-from-the-dataframe-with-one-column-as-a-sum-of-values-of%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown