TPU runs as slow as CPU when using keras_to_tpu_model in colab
I use tf.contrib.tpu.keras_to_tpu_model
to make my code be able to run on TPU,but it took 170 hours to finish an epoch while CPU took the same time and GPU took only 40 hours per epoch.I tried to adjust batch size but nothing changed.And I've tested the input function may take up 20% of the run time when running on GPU, so I think it's maybe not the main reason.
Here is my code:https://github.com/WangHexie/DHNE/blob/master/src/hypergraph_embedding.py
Run on colab:
- TPU:https://colab.research.google.com/gist/WangHexie/30c385509f9cd93be747f04c39f039a4/tpu-error.ipynb
- GPU:https://colab.research.google.com/gist/WangHexie/5bfac53bf92ef0ad527f15ddbf8705e1/-gpu-ipynb.ipynb
The model:
def build_model(self):
self.inputs = [Input(shape=(self.options.dim_feature[i], ), name='input_'.format(i), dtype='float') for i in range(3)]
self.encodeds = [Dense(self.options.embedding_size[i], activation='tanh', name='encode_'.format(i))(self.inputs[i]) for i in range(3)]
self.decodeds = [Dense(self.options.dim_feature[i], activation='sigmoid', name='decode_'.format(i),
activity_regularizer = regularizers.l2(0.0))(self.encodeds[i]) for i in range(3)]
self.merged = concatenate(self.encodeds, axis=1)
self.hidden_layer = Dense(self.options.hidden_size, activation='tanh', name='full_connected_layer')(self.merged)
self.ouput_layer = Dense(1, activation='sigmoid', name='classify_layer')(self.hidden_layer)
self.model = Model(inputs=self.inputs, outputs=self.decodeds+[self.ouput_layer])
self.model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=self.options.learning_rate),
loss=[self.sparse_autoencoder_error]*3+['binary_crossentropy'],
loss_weights=[self.options.alpha]*3+[1.0],
metrics=dict([('decode_'.format(i), 'mse') for i in range(3)]+[('classify_layer', 'accuracy')]))
self.model = tf.contrib.tpu.keras_to_tpu_model(
self.model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(
tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
)
)
self.model.summary()
python tensorflow keras google-colaboratory google-cloud-tpu
add a comment |
I use tf.contrib.tpu.keras_to_tpu_model
to make my code be able to run on TPU,but it took 170 hours to finish an epoch while CPU took the same time and GPU took only 40 hours per epoch.I tried to adjust batch size but nothing changed.And I've tested the input function may take up 20% of the run time when running on GPU, so I think it's maybe not the main reason.
Here is my code:https://github.com/WangHexie/DHNE/blob/master/src/hypergraph_embedding.py
Run on colab:
- TPU:https://colab.research.google.com/gist/WangHexie/30c385509f9cd93be747f04c39f039a4/tpu-error.ipynb
- GPU:https://colab.research.google.com/gist/WangHexie/5bfac53bf92ef0ad527f15ddbf8705e1/-gpu-ipynb.ipynb
The model:
def build_model(self):
self.inputs = [Input(shape=(self.options.dim_feature[i], ), name='input_'.format(i), dtype='float') for i in range(3)]
self.encodeds = [Dense(self.options.embedding_size[i], activation='tanh', name='encode_'.format(i))(self.inputs[i]) for i in range(3)]
self.decodeds = [Dense(self.options.dim_feature[i], activation='sigmoid', name='decode_'.format(i),
activity_regularizer = regularizers.l2(0.0))(self.encodeds[i]) for i in range(3)]
self.merged = concatenate(self.encodeds, axis=1)
self.hidden_layer = Dense(self.options.hidden_size, activation='tanh', name='full_connected_layer')(self.merged)
self.ouput_layer = Dense(1, activation='sigmoid', name='classify_layer')(self.hidden_layer)
self.model = Model(inputs=self.inputs, outputs=self.decodeds+[self.ouput_layer])
self.model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=self.options.learning_rate),
loss=[self.sparse_autoencoder_error]*3+['binary_crossentropy'],
loss_weights=[self.options.alpha]*3+[1.0],
metrics=dict([('decode_'.format(i), 'mse') for i in range(3)]+[('classify_layer', 'accuracy')]))
self.model = tf.contrib.tpu.keras_to_tpu_model(
self.model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(
tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
)
)
self.model.summary()
python tensorflow keras google-colaboratory google-cloud-tpu
add a comment |
I use tf.contrib.tpu.keras_to_tpu_model
to make my code be able to run on TPU,but it took 170 hours to finish an epoch while CPU took the same time and GPU took only 40 hours per epoch.I tried to adjust batch size but nothing changed.And I've tested the input function may take up 20% of the run time when running on GPU, so I think it's maybe not the main reason.
Here is my code:https://github.com/WangHexie/DHNE/blob/master/src/hypergraph_embedding.py
Run on colab:
- TPU:https://colab.research.google.com/gist/WangHexie/30c385509f9cd93be747f04c39f039a4/tpu-error.ipynb
- GPU:https://colab.research.google.com/gist/WangHexie/5bfac53bf92ef0ad527f15ddbf8705e1/-gpu-ipynb.ipynb
The model:
def build_model(self):
self.inputs = [Input(shape=(self.options.dim_feature[i], ), name='input_'.format(i), dtype='float') for i in range(3)]
self.encodeds = [Dense(self.options.embedding_size[i], activation='tanh', name='encode_'.format(i))(self.inputs[i]) for i in range(3)]
self.decodeds = [Dense(self.options.dim_feature[i], activation='sigmoid', name='decode_'.format(i),
activity_regularizer = regularizers.l2(0.0))(self.encodeds[i]) for i in range(3)]
self.merged = concatenate(self.encodeds, axis=1)
self.hidden_layer = Dense(self.options.hidden_size, activation='tanh', name='full_connected_layer')(self.merged)
self.ouput_layer = Dense(1, activation='sigmoid', name='classify_layer')(self.hidden_layer)
self.model = Model(inputs=self.inputs, outputs=self.decodeds+[self.ouput_layer])
self.model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=self.options.learning_rate),
loss=[self.sparse_autoencoder_error]*3+['binary_crossentropy'],
loss_weights=[self.options.alpha]*3+[1.0],
metrics=dict([('decode_'.format(i), 'mse') for i in range(3)]+[('classify_layer', 'accuracy')]))
self.model = tf.contrib.tpu.keras_to_tpu_model(
self.model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(
tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
)
)
self.model.summary()
python tensorflow keras google-colaboratory google-cloud-tpu
I use tf.contrib.tpu.keras_to_tpu_model
to make my code be able to run on TPU,but it took 170 hours to finish an epoch while CPU took the same time and GPU took only 40 hours per epoch.I tried to adjust batch size but nothing changed.And I've tested the input function may take up 20% of the run time when running on GPU, so I think it's maybe not the main reason.
Here is my code:https://github.com/WangHexie/DHNE/blob/master/src/hypergraph_embedding.py
Run on colab:
- TPU:https://colab.research.google.com/gist/WangHexie/30c385509f9cd93be747f04c39f039a4/tpu-error.ipynb
- GPU:https://colab.research.google.com/gist/WangHexie/5bfac53bf92ef0ad527f15ddbf8705e1/-gpu-ipynb.ipynb
The model:
def build_model(self):
self.inputs = [Input(shape=(self.options.dim_feature[i], ), name='input_'.format(i), dtype='float') for i in range(3)]
self.encodeds = [Dense(self.options.embedding_size[i], activation='tanh', name='encode_'.format(i))(self.inputs[i]) for i in range(3)]
self.decodeds = [Dense(self.options.dim_feature[i], activation='sigmoid', name='decode_'.format(i),
activity_regularizer = regularizers.l2(0.0))(self.encodeds[i]) for i in range(3)]
self.merged = concatenate(self.encodeds, axis=1)
self.hidden_layer = Dense(self.options.hidden_size, activation='tanh', name='full_connected_layer')(self.merged)
self.ouput_layer = Dense(1, activation='sigmoid', name='classify_layer')(self.hidden_layer)
self.model = Model(inputs=self.inputs, outputs=self.decodeds+[self.ouput_layer])
self.model.compile(optimizer=tf.train.AdamOptimizer(learning_rate=self.options.learning_rate),
loss=[self.sparse_autoencoder_error]*3+['binary_crossentropy'],
loss_weights=[self.options.alpha]*3+[1.0],
metrics=dict([('decode_'.format(i), 'mse') for i in range(3)]+[('classify_layer', 'accuracy')]))
self.model = tf.contrib.tpu.keras_to_tpu_model(
self.model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(
tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
)
)
self.model.summary()
python tensorflow keras google-colaboratory google-cloud-tpu
python tensorflow keras google-colaboratory google-cloud-tpu
edited Nov 15 '18 at 6:06
Milo Lu
1,65311628
1,65311628
asked Nov 15 '18 at 3:24
DiIliDiIli
258
258
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53311962%2ftpu-runs-as-slow-as-cpu-when-using-keras-to-tpu-model-in-colab%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53311962%2ftpu-runs-as-slow-as-cpu-when-using-keras-to-tpu-model-in-colab%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown