ValueError: X.shape[1] = 128 should be equal to 512, the number of features at training time
Currently i am working on facial recognition and i am having the following issue with the given code.
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i]
[3] >= len(frame):
print('Face is very close!')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(misc.imresize(cropped[i], (image_size, image_size),
interp='bilinear'))
scaled[i] = cv2.resize(scaled[i], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[i], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
And it is giving me following error:
Traceback (most recent call last):
File "F:stdprogramspythonCameraFacenet-Real-time-face-recognition-using-deep-learning-Tensorflowtest_video.py", line 107, in <module>
predictions = model.predict_proba(emb_array)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 613, in _predict_proba
X = self._validate_for_predict(X)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 478, in _validate_for_predict
(n_features, self.shape_fit_[1]))
ValueError: X.shape[1] = 128 should be equal to 512, the number of features at training time
python tensorflow scikit-learn svm
add a comment |
Currently i am working on facial recognition and i am having the following issue with the given code.
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i]
[3] >= len(frame):
print('Face is very close!')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(misc.imresize(cropped[i], (image_size, image_size),
interp='bilinear'))
scaled[i] = cv2.resize(scaled[i], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[i], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
And it is giving me following error:
Traceback (most recent call last):
File "F:stdprogramspythonCameraFacenet-Real-time-face-recognition-using-deep-learning-Tensorflowtest_video.py", line 107, in <module>
predictions = model.predict_proba(emb_array)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 613, in _predict_proba
X = self._validate_for_predict(X)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 478, in _validate_for_predict
(n_features, self.shape_fit_[1]))
ValueError: X.shape[1] = 128 should be equal to 512, the number of features at training time
python tensorflow scikit-learn svm
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14
add a comment |
Currently i am working on facial recognition and i am having the following issue with the given code.
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i]
[3] >= len(frame):
print('Face is very close!')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(misc.imresize(cropped[i], (image_size, image_size),
interp='bilinear'))
scaled[i] = cv2.resize(scaled[i], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[i], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
And it is giving me following error:
Traceback (most recent call last):
File "F:stdprogramspythonCameraFacenet-Real-time-face-recognition-using-deep-learning-Tensorflowtest_video.py", line 107, in <module>
predictions = model.predict_proba(emb_array)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 613, in _predict_proba
X = self._validate_for_predict(X)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 478, in _validate_for_predict
(n_features, self.shape_fit_[1]))
ValueError: X.shape[1] = 128 should be equal to 512, the number of features at training time
python tensorflow scikit-learn svm
Currently i am working on facial recognition and i am having the following issue with the given code.
for i in range(nrof_faces):
emb_array = np.zeros((1, embedding_size))
bb[i][0] = det[i][0]
bb[i][1] = det[i][1]
bb[i][2] = det[i][2]
bb[i][3] = det[i][3]
# inner exception
if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i]
[3] >= len(frame):
print('Face is very close!')
continue
cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
cropped[i] = facenet.flip(cropped[i], False)
scaled.append(misc.imresize(cropped[i], (image_size, image_size),
interp='bilinear'))
scaled[i] = cv2.resize(scaled[i], (input_image_size,input_image_size),
interpolation=cv2.INTER_CUBIC)
scaled[i] = facenet.prewhiten(scaled[i])
scaled_reshape.append(scaled[i].reshape(-1,input_image_size,input_image_size,3))
feed_dict = images_placeholder: scaled_reshape[i], phase_train_placeholder: False
emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
predictions = model.predict_proba(emb_array)
print(predictions)
And it is giving me following error:
Traceback (most recent call last):
File "F:stdprogramspythonCameraFacenet-Real-time-face-recognition-using-deep-learning-Tensorflowtest_video.py", line 107, in <module>
predictions = model.predict_proba(emb_array)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 613, in _predict_proba
X = self._validate_for_predict(X)
File "C:Program FilesPython36libsite-packagessklearnsvmbase.py", line 478, in _validate_for_predict
(n_features, self.shape_fit_[1]))
ValueError: X.shape[1] = 128 should be equal to 512, the number of features at training time
python tensorflow scikit-learn svm
python tensorflow scikit-learn svm
asked Nov 12 '18 at 16:57
MeeT ValaniMeeT Valani
61
61
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14
add a comment |
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266795%2fvalueerror-x-shape1-128-should-be-equal-to-512-the-number-of-features-at-t%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266795%2fvalueerror-x-shape1-128-should-be-equal-to-512-the-number-of-features-at-t%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Check that your train data (the one you built the model upon) and your new data (the data you are trying to classify) have the exact same attributes
– Roee Anuar
Nov 13 '18 at 15:14