Load pretrained model for training while changing optimizer



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








0















In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer for further training. However, it strikes to me that it rise error like below:




NotFoundError (see above for traceback): Key beta1_power not found in checkpoint



 [[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]



I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable do.



The code I use is below:



# 0. only 1 gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# 1. define global parameters

args = get_parser()
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)

# 2 prepare train datasets and test datasets by using tensorflow dataset api
# 2.1 train datasets

tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
dataset = tf.data.TFRecordDataset(tfrecords_f)
dataset = dataset.map(parse_function)
dataset = dataset.shuffle(buffer_size=args.buffer_size)
dataset = dataset.batch(args.batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
# 3.1 inference phase

w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
net = get_resnet(...)

# 3.2 loss

logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
...
# 3.3 calculate loss

infer_loss = ...

# 3.4 optimizer(change after pretrained)

# stage1
# opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
# stage2
opt = tf.train.AdamOptimizer(learning_rate=lr)

# 3.5 get train op

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grads, global_step=global_step)

# 4.restore stage1 model

# 4.1 saver

saver = tf.train.Saver(max_to_keep=10)

# 4.2 init all variables

sess.run(tf.global_variables_initializer())

# 4.3 restore stage1 model and change optimizer to do further training!

restore_saver = tf.train.Saver()
restore_saver.restore(sess, 'xxx.ckpt')


# Omit training part
...


The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!










share|improve this question






























    0















    In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer for further training. However, it strikes to me that it rise error like below:




    NotFoundError (see above for traceback): Key beta1_power not found in checkpoint



     [[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]



    I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable do.



    The code I use is below:



    # 0. only 1 gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"

    # 1. define global parameters

    args = get_parser()
    global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
    inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
    images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
    labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
    dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)

    # 2 prepare train datasets and test datasets by using tensorflow dataset api
    # 2.1 train datasets

    tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
    dataset = tf.data.TFRecordDataset(tfrecords_f)
    dataset = dataset.map(parse_function)
    dataset = dataset.shuffle(buffer_size=args.buffer_size)
    dataset = dataset.batch(args.batch_size)
    iterator = dataset.make_initializable_iterator()
    next_element = iterator.get_next()

    # 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
    # 3.1 inference phase

    w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
    net = get_resnet(...)

    # 3.2 loss

    logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
    ...
    # 3.3 calculate loss

    infer_loss = ...

    # 3.4 optimizer(change after pretrained)

    # stage1
    # opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
    # stage2
    opt = tf.train.AdamOptimizer(learning_rate=lr)

    # 3.5 get train op

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
    train_op = opt.apply_gradients(grads, global_step=global_step)

    # 4.restore stage1 model

    # 4.1 saver

    saver = tf.train.Saver(max_to_keep=10)

    # 4.2 init all variables

    sess.run(tf.global_variables_initializer())

    # 4.3 restore stage1 model and change optimizer to do further training!

    restore_saver = tf.train.Saver()
    restore_saver.restore(sess, 'xxx.ckpt')


    # Omit training part
    ...


    The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!










    share|improve this question


























      0












      0








      0


      1






      In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer for further training. However, it strikes to me that it rise error like below:




      NotFoundError (see above for traceback): Key beta1_power not found in checkpoint



       [[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]



      I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable do.



      The code I use is below:



      # 0. only 1 gpu
      os.environ["CUDA_VISIBLE_DEVICES"] = "0"

      # 1. define global parameters

      args = get_parser()
      global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
      inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
      images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
      labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
      dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)

      # 2 prepare train datasets and test datasets by using tensorflow dataset api
      # 2.1 train datasets

      tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
      dataset = tf.data.TFRecordDataset(tfrecords_f)
      dataset = dataset.map(parse_function)
      dataset = dataset.shuffle(buffer_size=args.buffer_size)
      dataset = dataset.batch(args.batch_size)
      iterator = dataset.make_initializable_iterator()
      next_element = iterator.get_next()

      # 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
      # 3.1 inference phase

      w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
      net = get_resnet(...)

      # 3.2 loss

      logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
      ...
      # 3.3 calculate loss

      infer_loss = ...

      # 3.4 optimizer(change after pretrained)

      # stage1
      # opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
      # stage2
      opt = tf.train.AdamOptimizer(learning_rate=lr)

      # 3.5 get train op

      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      with tf.control_dependencies(update_ops):
      train_op = opt.apply_gradients(grads, global_step=global_step)

      # 4.restore stage1 model

      # 4.1 saver

      saver = tf.train.Saver(max_to_keep=10)

      # 4.2 init all variables

      sess.run(tf.global_variables_initializer())

      # 4.3 restore stage1 model and change optimizer to do further training!

      restore_saver = tf.train.Saver()
      restore_saver.restore(sess, 'xxx.ckpt')


      # Omit training part
      ...


      The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!










      share|improve this question
















      In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer for further training. However, it strikes to me that it rise error like below:




      NotFoundError (see above for traceback): Key beta1_power not found in checkpoint



       [[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]



      I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable do.



      The code I use is below:



      # 0. only 1 gpu
      os.environ["CUDA_VISIBLE_DEVICES"] = "0"

      # 1. define global parameters

      args = get_parser()
      global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
      inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
      images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
      labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
      dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)

      # 2 prepare train datasets and test datasets by using tensorflow dataset api
      # 2.1 train datasets

      tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
      dataset = tf.data.TFRecordDataset(tfrecords_f)
      dataset = dataset.map(parse_function)
      dataset = dataset.shuffle(buffer_size=args.buffer_size)
      dataset = dataset.batch(args.batch_size)
      iterator = dataset.make_initializable_iterator()
      next_element = iterator.get_next()

      # 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
      # 3.1 inference phase

      w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
      net = get_resnet(...)

      # 3.2 loss

      logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
      ...
      # 3.3 calculate loss

      infer_loss = ...

      # 3.4 optimizer(change after pretrained)

      # stage1
      # opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
      # stage2
      opt = tf.train.AdamOptimizer(learning_rate=lr)

      # 3.5 get train op

      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      with tf.control_dependencies(update_ops):
      train_op = opt.apply_gradients(grads, global_step=global_step)

      # 4.restore stage1 model

      # 4.1 saver

      saver = tf.train.Saver(max_to_keep=10)

      # 4.2 init all variables

      sess.run(tf.global_variables_initializer())

      # 4.3 restore stage1 model and change optimizer to do further training!

      restore_saver = tf.train.Saver()
      restore_saver.restore(sess, 'xxx.ckpt')


      # Omit training part
      ...


      The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!







      python tensorflow optimization






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 15 '18 at 8:01









      Andras Deak

      21.1k64375




      21.1k64375










      asked Nov 15 '18 at 7:12









      ko samuelko samuel

      114




      114






















          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314159%2fload-pretrained-model-for-training-while-changing-optimizer%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314159%2fload-pretrained-model-for-training-while-changing-optimizer%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Use pre created SQLite database for Android project in kotlin

          Darth Vader #20

          Ondo