Cannot Reload saved Keras model using tensorflow
up vote
1
down vote
favorite
I am working in a single jupyter notebook. I create and train a very simple CNN with keras. It compiles, fits, and predicts fine. I save it with:
model.save("mymodel.hd5")
Model is a keras.models.Sequential.
I then read that back in with:
reload_keras_model = keras.models.load_model("mymodel.hd5")
That also works fine. However if I try to read the model in using tensorflow via:
from tensorflow.keras.models import load_model
reload_tf_mmodel = load_model("mymodel.hd5")
That fails with:
ValueError: Unknown layer:layers
Most of the threads I've read on github say "update your model" or comments about custom objects (I'm not using any). My target platform is the rpi zero and I've been able to install tf but unable to install keras, and that's why I want to load via tf. Why would keras and tf.keras handle this model differently and what do I need to update/change to read it in with tf.keras?
tensorflow keras
add a comment |
up vote
1
down vote
favorite
I am working in a single jupyter notebook. I create and train a very simple CNN with keras. It compiles, fits, and predicts fine. I save it with:
model.save("mymodel.hd5")
Model is a keras.models.Sequential.
I then read that back in with:
reload_keras_model = keras.models.load_model("mymodel.hd5")
That also works fine. However if I try to read the model in using tensorflow via:
from tensorflow.keras.models import load_model
reload_tf_mmodel = load_model("mymodel.hd5")
That fails with:
ValueError: Unknown layer:layers
Most of the threads I've read on github say "update your model" or comments about custom objects (I'm not using any). My target platform is the rpi zero and I've been able to install tf but unable to install keras, and that's why I want to load via tf. Why would keras and tf.keras handle this model differently and what do I need to update/change to read it in with tf.keras?
tensorflow keras
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am working in a single jupyter notebook. I create and train a very simple CNN with keras. It compiles, fits, and predicts fine. I save it with:
model.save("mymodel.hd5")
Model is a keras.models.Sequential.
I then read that back in with:
reload_keras_model = keras.models.load_model("mymodel.hd5")
That also works fine. However if I try to read the model in using tensorflow via:
from tensorflow.keras.models import load_model
reload_tf_mmodel = load_model("mymodel.hd5")
That fails with:
ValueError: Unknown layer:layers
Most of the threads I've read on github say "update your model" or comments about custom objects (I'm not using any). My target platform is the rpi zero and I've been able to install tf but unable to install keras, and that's why I want to load via tf. Why would keras and tf.keras handle this model differently and what do I need to update/change to read it in with tf.keras?
tensorflow keras
I am working in a single jupyter notebook. I create and train a very simple CNN with keras. It compiles, fits, and predicts fine. I save it with:
model.save("mymodel.hd5")
Model is a keras.models.Sequential.
I then read that back in with:
reload_keras_model = keras.models.load_model("mymodel.hd5")
That also works fine. However if I try to read the model in using tensorflow via:
from tensorflow.keras.models import load_model
reload_tf_mmodel = load_model("mymodel.hd5")
That fails with:
ValueError: Unknown layer:layers
Most of the threads I've read on github say "update your model" or comments about custom objects (I'm not using any). My target platform is the rpi zero and I've been able to install tf but unable to install keras, and that's why I want to load via tf. Why would keras and tf.keras handle this model differently and what do I need to update/change to read it in with tf.keras?
tensorflow keras
tensorflow keras
asked Nov 10 at 15:12
simusid
83421121
83421121
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
While keras (can) use TF as Backend, it does not guarantee that the saved model is readable in TF as well.
Note that you can use keras with both theano and tf, thus reload_keras_model = keras.models.load_model("mymodel.hd5")
will work good with both backends, as the saving/loading is done in the "keras" part, and not using the backend.
You can use this tool: keras_to_tensorflow
Or something similar.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
While keras (can) use TF as Backend, it does not guarantee that the saved model is readable in TF as well.
Note that you can use keras with both theano and tf, thus reload_keras_model = keras.models.load_model("mymodel.hd5")
will work good with both backends, as the saving/loading is done in the "keras" part, and not using the backend.
You can use this tool: keras_to_tensorflow
Or something similar.
add a comment |
up vote
0
down vote
While keras (can) use TF as Backend, it does not guarantee that the saved model is readable in TF as well.
Note that you can use keras with both theano and tf, thus reload_keras_model = keras.models.load_model("mymodel.hd5")
will work good with both backends, as the saving/loading is done in the "keras" part, and not using the backend.
You can use this tool: keras_to_tensorflow
Or something similar.
add a comment |
up vote
0
down vote
up vote
0
down vote
While keras (can) use TF as Backend, it does not guarantee that the saved model is readable in TF as well.
Note that you can use keras with both theano and tf, thus reload_keras_model = keras.models.load_model("mymodel.hd5")
will work good with both backends, as the saving/loading is done in the "keras" part, and not using the backend.
You can use this tool: keras_to_tensorflow
Or something similar.
While keras (can) use TF as Backend, it does not guarantee that the saved model is readable in TF as well.
Note that you can use keras with both theano and tf, thus reload_keras_model = keras.models.load_model("mymodel.hd5")
will work good with both backends, as the saving/loading is done in the "keras" part, and not using the backend.
You can use this tool: keras_to_tensorflow
Or something similar.
answered Nov 10 at 16:14
Dinari
1,275422
1,275422
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53240288%2fcannot-reload-saved-keras-model-using-tensorflow%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown