Converting png to Tensor tensorflow.js
up vote
0
down vote
favorite
I'm currently attempting to figure out how to convert a input png into a tensor with tensorflow.js so I can feed it into my model for training. Currently I'm capturing the image, saving it locally, reading it with fs.readFileSync, and then creating a buffer. Where i'm a bit lost is normalizing the buffer values from 0-244 to 0-1, then creating a tensor from this buffer to feed into the model.fit function as the X arg. I also don't really know how to set up my labels file and properly convert that into a buffer for the Y arg. (https://js.tensorflow.org/api/0.11.2/#tf.Model.fit) Any insight into the proper usage / configuration of images into tensors for using tensorflow.js would be greatly appreciated.
Repo is here;
https://github.com/Durban-Designer/Fighter-Ai
code for loading local image in data.js;
const tf = require('@tensorflow/tfjs');
const assert = require('assert');
const IMAGE_HEADER_BYTES = 32;
const IMAGE_HEIGHT = 600;
const IMAGE_WIDTH = 800;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
function loadHeaderValues(buffer, headerLength)
const headerValues = ;
for (let i = 0; i < headerLength / 4; i++)
headerValues[i] = buffer.readUInt32BE(i * 4);
return headerValues;
...
...
class Dataset
async loadLocalImage(filename)
const buffer = fs.readFileSync(filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
console.log(headerValues, buffer);
assert.equal(headerValues[5], IMAGE_HEIGHT);
assert.equal(headerValues[4], IMAGE_WIDTH);
const images = ;
let index = headerBytes;
while (index < buffer.byteLength)
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++)
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
images.push(array);
assert.equal(images.length, headerValues[1]);
return images;
module.exports = new Dataset();
image capture loop in app.js;
const ioHook = require("iohook");
const tf = require('@tensorflow/tfjs');
var screenCap = require('desktop-screenshot');
require('@tensorflow/tfjs-node');
const data = require('./src/data');
const virtKeys = require('./src/virtKeys');
const model = require('./src/model');
var dir = __dirname;
var paused = true;
var loopInterval,
image,
imageData,
result
ioHook.on('keyup', event =>
if (event.keycode === 88)
if (paused)
paused = false;
gameLoop();
else
paused = true;
);
ioHook.start();
function gameLoop ()
if (!paused)
screenCap(dir + '\image.png', width: 800, height: 600, quality: 60, function (error, complete)
if (error)
console.log(error);
else
imageData = await data.getImage(dir + '\image.png')
console.log(imageData);
result = model.predict(imageData, batchSize: 4);
console.log(result);
gameLoop();
)
I know I use model.predict here, I wanted to get the actual image to tensor part working then figure out labels and model.fit() in train-tensor.js in the repo. I don't have any actual working code for training so I didn't include it in this question, sorry if it caused any confusion.
Thank you again!
Edit final working code
const Image, createCanvas = require('canvas');
const canvas = createCanvas(800, 600);
const ctx = canvas.getContext('2d');
async function loadLocalImage (filename)
try
var img = new Image()
img.onload = () => ctx.drawImage(img, 0, 0);
img.onerror = err => throw err ;
img.src = filename;
image = tf.fromPixels(canvas);
return image;
catch (err)
console.log(err);
...
...
async getImage(filename)
try
this.image = await loadLocalImage(filename);
catch (error)
console.log('error loading image', error);
return this.image;
javascript node.js png buffer tensorflow.js
add a comment |
up vote
0
down vote
favorite
I'm currently attempting to figure out how to convert a input png into a tensor with tensorflow.js so I can feed it into my model for training. Currently I'm capturing the image, saving it locally, reading it with fs.readFileSync, and then creating a buffer. Where i'm a bit lost is normalizing the buffer values from 0-244 to 0-1, then creating a tensor from this buffer to feed into the model.fit function as the X arg. I also don't really know how to set up my labels file and properly convert that into a buffer for the Y arg. (https://js.tensorflow.org/api/0.11.2/#tf.Model.fit) Any insight into the proper usage / configuration of images into tensors for using tensorflow.js would be greatly appreciated.
Repo is here;
https://github.com/Durban-Designer/Fighter-Ai
code for loading local image in data.js;
const tf = require('@tensorflow/tfjs');
const assert = require('assert');
const IMAGE_HEADER_BYTES = 32;
const IMAGE_HEIGHT = 600;
const IMAGE_WIDTH = 800;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
function loadHeaderValues(buffer, headerLength)
const headerValues = ;
for (let i = 0; i < headerLength / 4; i++)
headerValues[i] = buffer.readUInt32BE(i * 4);
return headerValues;
...
...
class Dataset
async loadLocalImage(filename)
const buffer = fs.readFileSync(filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
console.log(headerValues, buffer);
assert.equal(headerValues[5], IMAGE_HEIGHT);
assert.equal(headerValues[4], IMAGE_WIDTH);
const images = ;
let index = headerBytes;
while (index < buffer.byteLength)
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++)
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
images.push(array);
assert.equal(images.length, headerValues[1]);
return images;
module.exports = new Dataset();
image capture loop in app.js;
const ioHook = require("iohook");
const tf = require('@tensorflow/tfjs');
var screenCap = require('desktop-screenshot');
require('@tensorflow/tfjs-node');
const data = require('./src/data');
const virtKeys = require('./src/virtKeys');
const model = require('./src/model');
var dir = __dirname;
var paused = true;
var loopInterval,
image,
imageData,
result
ioHook.on('keyup', event =>
if (event.keycode === 88)
if (paused)
paused = false;
gameLoop();
else
paused = true;
);
ioHook.start();
function gameLoop ()
if (!paused)
screenCap(dir + '\image.png', width: 800, height: 600, quality: 60, function (error, complete)
if (error)
console.log(error);
else
imageData = await data.getImage(dir + '\image.png')
console.log(imageData);
result = model.predict(imageData, batchSize: 4);
console.log(result);
gameLoop();
)
I know I use model.predict here, I wanted to get the actual image to tensor part working then figure out labels and model.fit() in train-tensor.js in the repo. I don't have any actual working code for training so I didn't include it in this question, sorry if it caused any confusion.
Thank you again!
Edit final working code
const Image, createCanvas = require('canvas');
const canvas = createCanvas(800, 600);
const ctx = canvas.getContext('2d');
async function loadLocalImage (filename)
try
var img = new Image()
img.onload = () => ctx.drawImage(img, 0, 0);
img.onerror = err => throw err ;
img.src = filename;
image = tf.fromPixels(canvas);
return image;
catch (err)
console.log(err);
...
...
async getImage(filename)
try
this.image = await loadLocalImage(filename);
catch (error)
console.log('error loading image', error);
return this.image;
javascript node.js png buffer tensorflow.js
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm currently attempting to figure out how to convert a input png into a tensor with tensorflow.js so I can feed it into my model for training. Currently I'm capturing the image, saving it locally, reading it with fs.readFileSync, and then creating a buffer. Where i'm a bit lost is normalizing the buffer values from 0-244 to 0-1, then creating a tensor from this buffer to feed into the model.fit function as the X arg. I also don't really know how to set up my labels file and properly convert that into a buffer for the Y arg. (https://js.tensorflow.org/api/0.11.2/#tf.Model.fit) Any insight into the proper usage / configuration of images into tensors for using tensorflow.js would be greatly appreciated.
Repo is here;
https://github.com/Durban-Designer/Fighter-Ai
code for loading local image in data.js;
const tf = require('@tensorflow/tfjs');
const assert = require('assert');
const IMAGE_HEADER_BYTES = 32;
const IMAGE_HEIGHT = 600;
const IMAGE_WIDTH = 800;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
function loadHeaderValues(buffer, headerLength)
const headerValues = ;
for (let i = 0; i < headerLength / 4; i++)
headerValues[i] = buffer.readUInt32BE(i * 4);
return headerValues;
...
...
class Dataset
async loadLocalImage(filename)
const buffer = fs.readFileSync(filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
console.log(headerValues, buffer);
assert.equal(headerValues[5], IMAGE_HEIGHT);
assert.equal(headerValues[4], IMAGE_WIDTH);
const images = ;
let index = headerBytes;
while (index < buffer.byteLength)
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++)
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
images.push(array);
assert.equal(images.length, headerValues[1]);
return images;
module.exports = new Dataset();
image capture loop in app.js;
const ioHook = require("iohook");
const tf = require('@tensorflow/tfjs');
var screenCap = require('desktop-screenshot');
require('@tensorflow/tfjs-node');
const data = require('./src/data');
const virtKeys = require('./src/virtKeys');
const model = require('./src/model');
var dir = __dirname;
var paused = true;
var loopInterval,
image,
imageData,
result
ioHook.on('keyup', event =>
if (event.keycode === 88)
if (paused)
paused = false;
gameLoop();
else
paused = true;
);
ioHook.start();
function gameLoop ()
if (!paused)
screenCap(dir + '\image.png', width: 800, height: 600, quality: 60, function (error, complete)
if (error)
console.log(error);
else
imageData = await data.getImage(dir + '\image.png')
console.log(imageData);
result = model.predict(imageData, batchSize: 4);
console.log(result);
gameLoop();
)
I know I use model.predict here, I wanted to get the actual image to tensor part working then figure out labels and model.fit() in train-tensor.js in the repo. I don't have any actual working code for training so I didn't include it in this question, sorry if it caused any confusion.
Thank you again!
Edit final working code
const Image, createCanvas = require('canvas');
const canvas = createCanvas(800, 600);
const ctx = canvas.getContext('2d');
async function loadLocalImage (filename)
try
var img = new Image()
img.onload = () => ctx.drawImage(img, 0, 0);
img.onerror = err => throw err ;
img.src = filename;
image = tf.fromPixels(canvas);
return image;
catch (err)
console.log(err);
...
...
async getImage(filename)
try
this.image = await loadLocalImage(filename);
catch (error)
console.log('error loading image', error);
return this.image;
javascript node.js png buffer tensorflow.js
I'm currently attempting to figure out how to convert a input png into a tensor with tensorflow.js so I can feed it into my model for training. Currently I'm capturing the image, saving it locally, reading it with fs.readFileSync, and then creating a buffer. Where i'm a bit lost is normalizing the buffer values from 0-244 to 0-1, then creating a tensor from this buffer to feed into the model.fit function as the X arg. I also don't really know how to set up my labels file and properly convert that into a buffer for the Y arg. (https://js.tensorflow.org/api/0.11.2/#tf.Model.fit) Any insight into the proper usage / configuration of images into tensors for using tensorflow.js would be greatly appreciated.
Repo is here;
https://github.com/Durban-Designer/Fighter-Ai
code for loading local image in data.js;
const tf = require('@tensorflow/tfjs');
const assert = require('assert');
const IMAGE_HEADER_BYTES = 32;
const IMAGE_HEIGHT = 600;
const IMAGE_WIDTH = 800;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
function loadHeaderValues(buffer, headerLength)
const headerValues = ;
for (let i = 0; i < headerLength / 4; i++)
headerValues[i] = buffer.readUInt32BE(i * 4);
return headerValues;
...
...
class Dataset
async loadLocalImage(filename)
const buffer = fs.readFileSync(filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
console.log(headerValues, buffer);
assert.equal(headerValues[5], IMAGE_HEIGHT);
assert.equal(headerValues[4], IMAGE_WIDTH);
const images = ;
let index = headerBytes;
while (index < buffer.byteLength)
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++)
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
images.push(array);
assert.equal(images.length, headerValues[1]);
return images;
module.exports = new Dataset();
image capture loop in app.js;
const ioHook = require("iohook");
const tf = require('@tensorflow/tfjs');
var screenCap = require('desktop-screenshot');
require('@tensorflow/tfjs-node');
const data = require('./src/data');
const virtKeys = require('./src/virtKeys');
const model = require('./src/model');
var dir = __dirname;
var paused = true;
var loopInterval,
image,
imageData,
result
ioHook.on('keyup', event =>
if (event.keycode === 88)
if (paused)
paused = false;
gameLoop();
else
paused = true;
);
ioHook.start();
function gameLoop ()
if (!paused)
screenCap(dir + '\image.png', width: 800, height: 600, quality: 60, function (error, complete)
if (error)
console.log(error);
else
imageData = await data.getImage(dir + '\image.png')
console.log(imageData);
result = model.predict(imageData, batchSize: 4);
console.log(result);
gameLoop();
)
I know I use model.predict here, I wanted to get the actual image to tensor part working then figure out labels and model.fit() in train-tensor.js in the repo. I don't have any actual working code for training so I didn't include it in this question, sorry if it caused any confusion.
Thank you again!
Edit final working code
const Image, createCanvas = require('canvas');
const canvas = createCanvas(800, 600);
const ctx = canvas.getContext('2d');
async function loadLocalImage (filename)
try
var img = new Image()
img.onload = () => ctx.drawImage(img, 0, 0);
img.onerror = err => throw err ;
img.src = filename;
image = tf.fromPixels(canvas);
return image;
catch (err)
console.log(err);
...
...
async getImage(filename)
try
this.image = await loadLocalImage(filename);
catch (error)
console.log('error loading image', error);
return this.image;
javascript node.js png buffer tensorflow.js
javascript node.js png buffer tensorflow.js
edited Nov 9 at 20:57
asked Nov 9 at 18:49
Royce Birnbaum
106
106
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
tensorflowjs already has a method for this: tf.fromPixels()
.
You just need to load the image into on of the accepted types(ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement
).
Your image loading Promise returns nothing because your async function doesn't return anything, just your callback, to fix this you need to create and resolve a promise yourself:
const imageGet = require('get-image-data');
async loadLocalImage(filename) {
return new Promise((res,rej)=>
imageGet(filename, (err, info) =>
if(err)
rej(err);
return;
const image = tf.fromPixels(info.data)
console.log(image, '127');
res(image);
);
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
tensorflowjs already has a method for this: tf.fromPixels()
.
You just need to load the image into on of the accepted types(ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement
).
Your image loading Promise returns nothing because your async function doesn't return anything, just your callback, to fix this you need to create and resolve a promise yourself:
const imageGet = require('get-image-data');
async loadLocalImage(filename) {
return new Promise((res,rej)=>
imageGet(filename, (err, info) =>
if(err)
rej(err);
return;
const image = tf.fromPixels(info.data)
console.log(image, '127');
res(image);
);
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
add a comment |
up vote
0
down vote
accepted
tensorflowjs already has a method for this: tf.fromPixels()
.
You just need to load the image into on of the accepted types(ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement
).
Your image loading Promise returns nothing because your async function doesn't return anything, just your callback, to fix this you need to create and resolve a promise yourself:
const imageGet = require('get-image-data');
async loadLocalImage(filename) {
return new Promise((res,rej)=>
imageGet(filename, (err, info) =>
if(err)
rej(err);
return;
const image = tf.fromPixels(info.data)
console.log(image, '127');
res(image);
);
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
tensorflowjs already has a method for this: tf.fromPixels()
.
You just need to load the image into on of the accepted types(ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement
).
Your image loading Promise returns nothing because your async function doesn't return anything, just your callback, to fix this you need to create and resolve a promise yourself:
const imageGet = require('get-image-data');
async loadLocalImage(filename) {
return new Promise((res,rej)=>
imageGet(filename, (err, info) =>
if(err)
rej(err);
return;
const image = tf.fromPixels(info.data)
console.log(image, '127');
res(image);
);
tensorflowjs already has a method for this: tf.fromPixels()
.
You just need to load the image into on of the accepted types(ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement
).
Your image loading Promise returns nothing because your async function doesn't return anything, just your callback, to fix this you need to create and resolve a promise yourself:
const imageGet = require('get-image-data');
async loadLocalImage(filename) {
return new Promise((res,rej)=>
imageGet(filename, (err, info) =>
if(err)
rej(err);
return;
const image = tf.fromPixels(info.data)
console.log(image, '127');
res(image);
);
edited Nov 9 at 20:13
answered Nov 9 at 19:46
Sebastian Speitel
3,9382425
3,9382425
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
add a comment |
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
I tried that but i'm still getting an undefined result from the promise, i'll edit the function into above since comments don't have breaks.
– Royce Birnbaum
Nov 9 at 19:57
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Your callback returns something not your async function
– Sebastian Speitel
Nov 9 at 20:08
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
Thank you so much!
– Royce Birnbaum
Nov 9 at 20:12
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53231699%2fconverting-png-to-tensor-tensorflow-js%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown