Pyspark Impala jdbc Driver does not support this optional feature









up vote
0
down vote

favorite












I am using pyspark for spark streaming. I am able to stream and create the dataframe properly with no issues. I was also able to insert data into Impala table created with only a few(5) sampled columns out of the overall columns(72) in the message from Kafka. But when I create a new a table with proper data types and columns, similarly the dataframe now has all the columns mentioned in the message of Kafka stream. I get the below exception.




java.sql.SQLFeatureNotSupportedException: [Cloudera]JDBC Driver does not support this optional feature.
at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:627)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)




I have searched a lot on this, but could not find any solution on this. I enabled debug logs as well, still it won't mention what feature does the driver not support.
Any help or proper guidance would be appreciated.
Thank you



Version details :



pyspark : 2.2.0
Kafka : 0.10.2
Cloudera : 5.15.0
Cloudera Impala : 2.12.0-cdh5.15.0
Cloudera Impala JDBC driver : 2.6.4



The code I have used :



import json
from pyspark import SparkContext,SparkConf,HiveContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SparkSession,Row
from pyspark.sql.functions import lit
from pyspark.sql.types import *

conf = SparkConf().setAppName("testkafkarecvstream")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 10)
spark = SparkSession.builder.appName("testkafkarecvstream").getOrCreate()
jdbcUrl = "jdbc:impala://hostname:21050/dbName;AuthMech=0;"

fields = [
StructField("column_name01", StringType(), True),
StructField("column_name02", StringType(), True),
StructField("column_name03", DoubleType(), True),
StructField("column_name04", StringType(), True),
StructField("column_name05", IntegerType(), True),
StructField("column_name06", StringType(), True),
.....................
StructField("column_name72", StringType(), True),
]

schema = StructType(fields)

def make_rows(parts):
customRow = Row(column_name01=datatype(parts['column_name01']),
.....,
column_name72=datatype(parts['column_name72'])
)
return customRow


def createDFToParquet(rdd):
try:
df = spark.createDataFrame(rdd,schema)
df.show()df.write.jdbc(jdbcUrl,
table="table_name",
mode="append",)
except Exception as e:
print str(e)


zkNode = "zkNode_name:2181"
topic = "topic_name"

# Reciever method
kvs = KafkaUtils.createStream(ssc,
zkNode,
"consumer-group-id",
topic:5,
"auto.offset.reset" : "smallest")

lines = kvs.map(lambda x: x[1])
conv = lines.map(lambda x: json.loads(x))
table = conv.map(makeRows)
table.foreachRDD(createDFToParquet)

table.pprint()

ssc.start()
ssc.awaitTermination()









share|improve this question









New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.



















  • Are you trying to define a Array or struct?
    – karma4917
    Nov 9 at 16:37










  • Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
    – karma4917
    Nov 9 at 16:54










  • Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
    – Kaustubh Desai
    yesterday















up vote
0
down vote

favorite












I am using pyspark for spark streaming. I am able to stream and create the dataframe properly with no issues. I was also able to insert data into Impala table created with only a few(5) sampled columns out of the overall columns(72) in the message from Kafka. But when I create a new a table with proper data types and columns, similarly the dataframe now has all the columns mentioned in the message of Kafka stream. I get the below exception.




java.sql.SQLFeatureNotSupportedException: [Cloudera]JDBC Driver does not support this optional feature.
at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:627)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)




I have searched a lot on this, but could not find any solution on this. I enabled debug logs as well, still it won't mention what feature does the driver not support.
Any help or proper guidance would be appreciated.
Thank you



Version details :



pyspark : 2.2.0
Kafka : 0.10.2
Cloudera : 5.15.0
Cloudera Impala : 2.12.0-cdh5.15.0
Cloudera Impala JDBC driver : 2.6.4



The code I have used :



import json
from pyspark import SparkContext,SparkConf,HiveContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SparkSession,Row
from pyspark.sql.functions import lit
from pyspark.sql.types import *

conf = SparkConf().setAppName("testkafkarecvstream")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 10)
spark = SparkSession.builder.appName("testkafkarecvstream").getOrCreate()
jdbcUrl = "jdbc:impala://hostname:21050/dbName;AuthMech=0;"

fields = [
StructField("column_name01", StringType(), True),
StructField("column_name02", StringType(), True),
StructField("column_name03", DoubleType(), True),
StructField("column_name04", StringType(), True),
StructField("column_name05", IntegerType(), True),
StructField("column_name06", StringType(), True),
.....................
StructField("column_name72", StringType(), True),
]

schema = StructType(fields)

def make_rows(parts):
customRow = Row(column_name01=datatype(parts['column_name01']),
.....,
column_name72=datatype(parts['column_name72'])
)
return customRow


def createDFToParquet(rdd):
try:
df = spark.createDataFrame(rdd,schema)
df.show()df.write.jdbc(jdbcUrl,
table="table_name",
mode="append",)
except Exception as e:
print str(e)


zkNode = "zkNode_name:2181"
topic = "topic_name"

# Reciever method
kvs = KafkaUtils.createStream(ssc,
zkNode,
"consumer-group-id",
topic:5,
"auto.offset.reset" : "smallest")

lines = kvs.map(lambda x: x[1])
conv = lines.map(lambda x: json.loads(x))
table = conv.map(makeRows)
table.foreachRDD(createDFToParquet)

table.pprint()

ssc.start()
ssc.awaitTermination()









share|improve this question









New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.



















  • Are you trying to define a Array or struct?
    – karma4917
    Nov 9 at 16:37










  • Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
    – karma4917
    Nov 9 at 16:54










  • Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
    – Kaustubh Desai
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am using pyspark for spark streaming. I am able to stream and create the dataframe properly with no issues. I was also able to insert data into Impala table created with only a few(5) sampled columns out of the overall columns(72) in the message from Kafka. But when I create a new a table with proper data types and columns, similarly the dataframe now has all the columns mentioned in the message of Kafka stream. I get the below exception.




java.sql.SQLFeatureNotSupportedException: [Cloudera]JDBC Driver does not support this optional feature.
at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:627)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)




I have searched a lot on this, but could not find any solution on this. I enabled debug logs as well, still it won't mention what feature does the driver not support.
Any help or proper guidance would be appreciated.
Thank you



Version details :



pyspark : 2.2.0
Kafka : 0.10.2
Cloudera : 5.15.0
Cloudera Impala : 2.12.0-cdh5.15.0
Cloudera Impala JDBC driver : 2.6.4



The code I have used :



import json
from pyspark import SparkContext,SparkConf,HiveContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SparkSession,Row
from pyspark.sql.functions import lit
from pyspark.sql.types import *

conf = SparkConf().setAppName("testkafkarecvstream")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 10)
spark = SparkSession.builder.appName("testkafkarecvstream").getOrCreate()
jdbcUrl = "jdbc:impala://hostname:21050/dbName;AuthMech=0;"

fields = [
StructField("column_name01", StringType(), True),
StructField("column_name02", StringType(), True),
StructField("column_name03", DoubleType(), True),
StructField("column_name04", StringType(), True),
StructField("column_name05", IntegerType(), True),
StructField("column_name06", StringType(), True),
.....................
StructField("column_name72", StringType(), True),
]

schema = StructType(fields)

def make_rows(parts):
customRow = Row(column_name01=datatype(parts['column_name01']),
.....,
column_name72=datatype(parts['column_name72'])
)
return customRow


def createDFToParquet(rdd):
try:
df = spark.createDataFrame(rdd,schema)
df.show()df.write.jdbc(jdbcUrl,
table="table_name",
mode="append",)
except Exception as e:
print str(e)


zkNode = "zkNode_name:2181"
topic = "topic_name"

# Reciever method
kvs = KafkaUtils.createStream(ssc,
zkNode,
"consumer-group-id",
topic:5,
"auto.offset.reset" : "smallest")

lines = kvs.map(lambda x: x[1])
conv = lines.map(lambda x: json.loads(x))
table = conv.map(makeRows)
table.foreachRDD(createDFToParquet)

table.pprint()

ssc.start()
ssc.awaitTermination()









share|improve this question









New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I am using pyspark for spark streaming. I am able to stream and create the dataframe properly with no issues. I was also able to insert data into Impala table created with only a few(5) sampled columns out of the overall columns(72) in the message from Kafka. But when I create a new a table with proper data types and columns, similarly the dataframe now has all the columns mentioned in the message of Kafka stream. I get the below exception.




java.sql.SQLFeatureNotSupportedException: [Cloudera]JDBC Driver does not support this optional feature.
at com.cloudera.impala.exceptions.ExceptionConverter.toSQLException(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.checkTypeSupported(Unknown Source)
at com.cloudera.impala.jdbc.common.SPreparedStatement.setNull(Unknown Source)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:627)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:782)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:926)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2064)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)




I have searched a lot on this, but could not find any solution on this. I enabled debug logs as well, still it won't mention what feature does the driver not support.
Any help or proper guidance would be appreciated.
Thank you



Version details :



pyspark : 2.2.0
Kafka : 0.10.2
Cloudera : 5.15.0
Cloudera Impala : 2.12.0-cdh5.15.0
Cloudera Impala JDBC driver : 2.6.4



The code I have used :



import json
from pyspark import SparkContext,SparkConf,HiveContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SparkSession,Row
from pyspark.sql.functions import lit
from pyspark.sql.types import *

conf = SparkConf().setAppName("testkafkarecvstream")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 10)
spark = SparkSession.builder.appName("testkafkarecvstream").getOrCreate()
jdbcUrl = "jdbc:impala://hostname:21050/dbName;AuthMech=0;"

fields = [
StructField("column_name01", StringType(), True),
StructField("column_name02", StringType(), True),
StructField("column_name03", DoubleType(), True),
StructField("column_name04", StringType(), True),
StructField("column_name05", IntegerType(), True),
StructField("column_name06", StringType(), True),
.....................
StructField("column_name72", StringType(), True),
]

schema = StructType(fields)

def make_rows(parts):
customRow = Row(column_name01=datatype(parts['column_name01']),
.....,
column_name72=datatype(parts['column_name72'])
)
return customRow


def createDFToParquet(rdd):
try:
df = spark.createDataFrame(rdd,schema)
df.show()df.write.jdbc(jdbcUrl,
table="table_name",
mode="append",)
except Exception as e:
print str(e)


zkNode = "zkNode_name:2181"
topic = "topic_name"

# Reciever method
kvs = KafkaUtils.createStream(ssc,
zkNode,
"consumer-group-id",
topic:5,
"auto.offset.reset" : "smallest")

lines = kvs.map(lambda x: x[1])
conv = lines.map(lambda x: json.loads(x))
table = conv.map(makeRows)
table.foreachRDD(createDFToParquet)

table.pprint()

ssc.start()
ssc.awaitTermination()






jdbc pyspark spark-streaming cloudera impala






share|improve this question









New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited yesterday





















New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Nov 9 at 12:53









Kaustubh Desai

12




12




New contributor




Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Kaustubh Desai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • Are you trying to define a Array or struct?
    – karma4917
    Nov 9 at 16:37










  • Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
    – karma4917
    Nov 9 at 16:54










  • Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
    – Kaustubh Desai
    yesterday

















  • Are you trying to define a Array or struct?
    – karma4917
    Nov 9 at 16:37










  • Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
    – karma4917
    Nov 9 at 16:54










  • Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
    – Kaustubh Desai
    yesterday
















Are you trying to define a Array or struct?
– karma4917
Nov 9 at 16:37




Are you trying to define a Array or struct?
– karma4917
Nov 9 at 16:37












Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
– karma4917
Nov 9 at 16:54




Can you show some code you tried so far? Also, what version of JDBC are you using for Impala?
– karma4917
Nov 9 at 16:54












Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
– Kaustubh Desai
yesterday





Q : Are you trying to define a Array or struct? I have defined an array for the schema. Q : Also, what version of JDBC are you using for Impala? A : Cloudera Impala JDBC driver : 2.6.4
– Kaustubh Desai
yesterday


















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Kaustubh Desai is a new contributor. Be nice, and check out our Code of Conduct.









 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53226069%2fpyspark-impala-jdbc-driver-does-not-support-this-optional-feature%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes








Kaustubh Desai is a new contributor. Be nice, and check out our Code of Conduct.









 

draft saved


draft discarded


















Kaustubh Desai is a new contributor. Be nice, and check out our Code of Conduct.












Kaustubh Desai is a new contributor. Be nice, and check out our Code of Conduct.











Kaustubh Desai is a new contributor. Be nice, and check out our Code of Conduct.













 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53226069%2fpyspark-impala-jdbc-driver-does-not-support-this-optional-feature%23new-answer', 'question_page');

);

Post as a guest














































































Popular posts from this blog

Use pre created SQLite database for Android project in kotlin

Darth Vader #20

Ondo